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Foreword 

I H E ACS SYMPOSIUM SERIES was first published in 1974 to 
provide a mechanism for publishing symposia quickly in book 
form. The purpose of this series is to publish comprehensive 
books developed from symposia, which are usually "snapshots 
in time" of the current research being done on a topic, plus 
some review material on the topic. For this reason, it is neces
sary that the papers be published as quickly as possible. 

Before a symposium-based book is put under contract, the 
proposed table of contents is reviewed for appropriateness to 
the topic and for comprehensiveness of the collection. Some 
papers are excluded at this point, and others are added to 
round out the scope of the volume. In addition, a draft of each 
paper is peer-reviewed prior to final acceptance or rejection. 
This anonymous review process is supervised by the organiz
er^) of the symposium, who become the editor(s) of the book. 
The authors then revise their papers according to the recom
mendations of both the reviewers and the editors, prepare 
camera-ready copy, and submit the final papers to the editors, 
who check that all necessary revisions have been made. 

As a rule, only original research papers and original re
view papers are included in the volumes. Verbatim reproduc
tions of previously published papers are not accepted. 

M. Joan Comstock 
Series Editor 
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Preface 

CoMPUTER-AIDED M O L E C U L A R DESIGN (CAMD) has become an impor
tant tool in many academic and industrial labs. In spite of this, the ques
tion of what new products have resulted from CAMD often arises. This 
question is complicated by the fact that modeling is only part of a mul-
tidisciplinary effort. Thus, although modeling is playing an increasing 
role in product development, it can be difficult to assess its impact in 
bringing any particular product to market. In many ways this question is 
analogous to asking what new products have been developed with NMR 
spectroscopy or X-ray crystallography. It is equally hard to attribute 
development of specific products to these tools, but most chemists would 
find working without them unthinkable. 

Many experimental chemists ask a related question about CAMD: 
How can I apply modeling to my research? They have witnessed the 
explosion of computational papers in the literature and are anxious to 
bring these techniques to bear on their own research problems. Answers 
to this question are often buried in seminars and papers that focus pri
marily on methods and their development. Also, many of the papers pub
lished in this area are so laden with specialized terminology that they are 
inaccessible to the nonspecialist. 

Our goal in organizing this symposium and book is to provide 
answers to these two important questions. Our vehicle for achieving this 
goal is to highlight case studies that illustrate application of modeling to a 
variety of chemical problems, with an emphasis on product development. 
This volume is not meant to be complete, but simply to offer concrete 
examples that show how CAMD has been used to tackle real-world prob
lems. The contributors have provided numerous examples in which com
puter simulation has improved mechanistic understanding, provided struc
tural or energetic information, and led the way in rational design of new 
drugs, agrochemicals, and materials. 

The book is divided into three general sections: Pharmaceuticals, 
Agrochemicals, and Materials. However, some chapters deal with topics 
that are relevant across sections; for instance, the chapters devoted to 
organic synthesis and toxicology are pertinent to pharmaceutical as well 
as agrochemical design. 

One strength of this collection is the diversity represented both in 
terms of applications and computational methods. Despite this diversity, 
it is possible to discern a few general approaches. The first is 
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computation as an analytical tool. This approach entails simply comput
ing molecular properties that may be difficult, time consuming, or expen
sive to measure experimentally. Modern theoretical and computational 
methods put a wide array of molecular properties within reach. Some
times the ability to compute energies, structures, or physical properties 
can be critical to design success. 

The second is modeling-based design. This approach can be driven by 
quantitative structure-activity relationships (QSAR) or more fundamen
tal methods based on structural and energetic calculations. Many exam
ples of modeling-based design are found in this book. Here the connec
tion between modeling and product development is clear, and modeling 
plays a key role. 

Another approach is computer simulation, which can serve as an 
invaluable tool for probing mechanisms, because it is possible to simulate 
processes computationally that are difficult or impossible to observe 
experimentally. As is true for other scientific disciplines, computer simu
lation is increasingly assuming a role in chemistry comparable and com
plementary to experiment and theory. 

The last approach involves the generation of hypotheses. Even quali
tative molecular models can have significant value in generating and 
evaluating ideas, for example, the de novo design of ligands in pharma
ceutical and agrochemical research. 

This book was assembled with two audiences in mind: the computa
tional chemist and the experimental chemist, each approaching CAMD 
from different perspectives, but sharing a common desire to solve impor
tant practical problems in the most efficient manner. We hope this col
lection serves both audiences and provides a fresh perspective on the 
application of CAMD in chemistry. 

We thank our authors for their contributions. We also thank Tripos, 
Rohm and Haas, and Merck for providing financial support for the sym
posium on which this book was based. 

CHARLES H. REYNOLDS 
Rohm and Haas Research 
Spring House, P A 19477 

M. KATHARINE HOLLOWAY 
Merck Research Laboratories 
West Point, P A 19486 

HAROLD K. COX 
Zeneca Ag Products 
Richmond, C A 94804 

December 19, 1994 
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Chapter 1 

Current Approaches in Computer-Aided 
Molecular Design 

Bruce R. Gelin 

MMCC Publishing, P.O. Box 381849, Cambridge, MA 02238 

Computer simulation methods in chemistry continue a long history 
of chemical models and calculations based on them. Great progress 
in both computer hardware and the software packages has resulted in 
current emphasis on graphical interfaces for model building, simula
tion specification and control, and visual analysis of results. A 
descriptive overview of the most common techniques and their appli
cations is given here. Some approaches which have been repeatedly 
and successfully applied are characterized as modeling paradigms. A 
brief look at trends and future prospects closes this overview. 

Mathematical theories and the corresponding computational evaluations of chemical 
phenomena are not new. As early as 1929, P .A.M. Dirac wrote that, in view of the 
contemporary development of quantum mechanics, "the underlying physical laws 
necessary for the mathematical theory of physics and the whole of chemistry are 
thus completely known "(7,) Lacking, of course, were closed-form solutions and the 
means of carrying out approximate calculations on anything larger than model 
systems such as the hydrogen atom or H 2

+ ion. For many years, chemists have 
developed simplifications, approximations, and numerical methods that make it 
possible to evaluate mathematical theories for realistic molecules. These develop
ments continue to the present day (2-5). 

Almost 50 years have passed since the first computation of the steric energy of 
a molecule in terms of nonbonded interactions. Westheimer and Mayer (6) calcu
lated the steric contribution as a means to rationalize the rates of racemization of 
optically active diphenyl compounds. They used functional forms, and the idea of 
calculating a molecular energy from them, suggested by Hill (7). It is over 30 years 
ago that the first use of an electronic computer to calculate and optimize the 
molecular energy was made by Hendrickson (8). He evaluated simple energy 
functions for angle bending, torsional twisting, and nonbonded contributions to 
perform conformational analysis and find minimum-energy geometries for cyclo-
pentane, cyclohexane, and cycloheptane; a footnote indicates that one cycle of 
energy calculation and structure adjustment for cycloheptane took about 15 seconds 
on the IBM 709 computer employed in that work. 

The immense and continuing progress in computers has certainly played a key 
role in making chemical computations far more widespread since these early 

0097-6156y95A)589-0001$12.00A) 
© 1995 American Chemical Society 
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2 C O M P U T E R - A I D E D M O L E C U L A R D E S I G N 

examples. But progress has not been limited to hardware performance. Growing 
hardware capabilities, coupled with deeper understanding gained from earlier 
simulations, permit implementation of improved, or even radically more efficient, 
software algorithms. An example is the speed increase factor of about 2 χ 107 since 
1967 in ab initio molecular orbital calculations using the GAUSSIAN program and its 
predecessor, POLYATOM ; the advancements are attributed about equally to hardware 
and software (9). 

Scientists have experienced at least three major computing environments, with 
two almost revolutionary transitions between them. The computer center era of the 
1960s and 1970s provided standardized computing, using the FORTRAN language 
and a batch operating environment. The availability in the late 1970s of time-shared 
superminicomputers such as the Digital Equipment Corp. V A X allowed researchers 
to develop programs and obtain results with more rapid, often interactive response, 
and with significantly less skill required to use the machine. In the late 1980s, 
integrated graphics workstations began to replace host-terminal architectures. The 
personal computer has had less impact on chemical modeling and simulation than 
might have been expected. Apparently the processing speeds and graphics resolu
tion have not been sufficient for modeling applications, and workstations have 
remained the target platform for most development. Personal computers have been 
employed for much structure-drawing, information retrieval and presentation, and 
other chemical utility software, and they can be expected to play a greater role in 
the future. 

The software has followed these computer developments, with many graphical 
model-building, simulation control, and visualization and analysis programs now 
available. An important factor in making computational chemistry software avail
able was (and is) the Quantum Chemistry Program Exchange (QCPE) (JO), which 
distributes contributed programs to academic researchers at very low cost. The 
QCPE is not limited to quantum chemistry codes, but now handles molecular 
mechanics and many other types of programs as well. Further, a commercial soft
ware industry for computational chemistry and molecular modeling has arisen (11), 
with the first companies founded in the late 1970s and another major group in the 
mid-1980s; new companies continue to enter the market today. Competition among 
these companies has increased the variety and improved the quality of programs 
available. Currently the INTERNET provides a posting and distribution means for 
programs and other information made available by scientists who wish to encourage 
use of their work by others (12). 

Given this background, it is interesting to consider the present-day range of 
chemical computations. The largest have required over 1000 hours of central 
processor time on the fastest computers available; here three examples are cited 
from the fields of protein dynamics, detergent simulation, and inorganic crystal 
structure. Mark and van Gunsteren (13) modeled the molten globule state of hen 
egg-white lysozyme by applying molecular dynamics at elevated temperatures to 
cause gradual denaturation of the protein, starting from its solvated crystal 
structure; the total number of particles treated was 17,299. Karaborni et al (14) ran 
molecular dynamics on a system with 31,735 particles, of three types: a non-polar 
one representing oil, a polar one representing water, and a unit containing one polar 
and one non-polar particle representing a detergent molecule. A simulation of SiO? 
at various densities in a box 240 Â on a side, using 41,472 particles (15), required 
over 1200 hours on a massively parallel computer. 

At the other end of this range of computations are programs for personal 
computers (of both the MS-DOS and Macintosh type). Applications range from 
tasks as simple as drawing chemical structures and placing them in reports, to 
building models for 3D visualization, to simulations of moderate complexity. In 
addition to the chemical information utilities mentioned above, a number of 
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1. G E L I N Current Approaches in Computer-Aided Molecular Design 3 

molecular mechanics and even quantum mechanics programs are now available for 
personal computers. 

In this overview, we discuss general approaches in the field of computer-aided 
molecular design, then consider applications in pharmaceuticals, agrochemicals, and 
materials. Special note is made of some often-used methods, here called modeling 
paradigms, which have been applied repeatedly and successfully. A brief con
sideration of trends and future prospects closes this overview. 

Techniques of Computer-Aided Molecular Design 

There is no precise definition of terms such as molecular modeling, computational 
chemistry, or molecular simulation, which may be understood variously according 
to an individual's experience and interests. As a first attempt at classification, those 
computational methods based on energetic models of the system can be 
distinguished from those dealing primarily with other concepts, such as structure 
matching, chemical similarity, molecular shape, group contributions, and QSAR. 

Among the energetic models, techniques based on electronic structure calcula
tion (molecular orbital, density functional, and semiempirical methods) can be 
differentiated from the empirical energy function (force field) methods, which do 
not treat electrons explicitly, but model their effects in terms of analytical functions 
expressing energy contributions from bond stretching, angle bending, torsions, and 
nonbonded interactions. There is clearly a trade-off between accuracy of treatment 
of the physical realities and convenience of evaluation of the model; a single-point 
energy calculation using energy function methods is many orders of magnitude 
faster than an ab initio electronic structure calculation, but the latter yields much 
more detailed information. 

It is useful to recall the definition of a model as a replica or facsimile of a real 
object. Chemists have long used models, from simple paper-and-pencil sketches of 
structures to the precisely machined CPK models (16). But physical models of large 
molecules are hard to build, expensive, opaque, and difficult to support; while 
somewhat deformable, they do not have the correct flexibility corresponding to real 
molecules. For these and other reasons, mathematical models stored in a computer 
represent a significant advance in the ability of chemists to revise and experiment 
with molecular models. The complexity and realism of models can span a wide 
range, but the process of matching a model to the knowledge sought must take into 
account: 

• preserving the essential physical attributes of the system, while removing 
excessive details 

• ease of evaluating the model, interpreting its results, and comparing them to 
experimental data 

• ease of preparing and modifying the model for re-runs representing different 
assumptions. 

The generation of a computer model can be as easy as copying a set of atomic 
coordinates for a small molecule or a protein. It may be a little harder to build an 
enzyme-ligand complex, a solvated system, or a periodic solid. An altogether 
different level of effort is required to construct a dense, amorphous polymer net
work having chains in a Boltzmann distribution of local conformations, at random 
orientations, with no long-range order (17). Obviously the difficulty of making 
modifications varies with the complexity of the original model. 

Once a model exists, both energetic simulations and non-energy based methods 
can be applied to it. Among the most common operations performed with energetic 
models (whether electronic or force-field calculations) are the following: 
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4 C O M P U T E R - A I D E D M O L E C U L A R D E S I G N 

Energy calculation for a given geometry. This can range in computational effort 
from a fraction of a second for a force field evaluation of a small molecule (down 
from the 15 sec in 1961 quoted in Ref. 8), to tens of seconds for force-field 
evaluation of a complex multi-molecule system, to many minutes for a highly 
accurate ab initio calculation giving a detailed treatment of the electronic structure 
and energy of an organic molecule. 

Energy minimization. Using gradients of the energy, obtained either by finite 
differences or from analytical gradient expressions, the atoms are shifted so as to 
produce a lower energy. After multiple cycles of energy/gradient calculation and 
coordinate adjustment, the system converges to within pre-set tolerances of the 
nearest local minimum. 

Energy curve or surface mapping. Repeated evaluations of the energy, as one or 
more coordinates are systematically varied, produce energy barriers, potential 
energy surfaces, transition paths, etc. If the other coordinates are not permitted to 
change as the coordinates of interest are varied, the result is a rigid-geometry map. 
If the rest of the system is energy minimized while the coordinates of interest are 
constrained at each of the series of values, the result is a flexible-geometry or 
adiabatic map, this latter process is also called torsional driving when the 
coordinate of interest is a torsion. 

Conformational search. The task of finding other local minima or generating an 
ensemble that properly samples the conformational space of a molecule can range 
from simple to very difficult. The rotamers of a small molecule with a few single 
bonds can easily be visualized, but for larger systems, and in the general case, the 
conformational space is too large or too complex to enumerate, and various 
combinations of systematic and random searching methods must be employed (18). 
The fact that an entire recent journal issue was devoted to conformational searching 
indicates the significance of the problem (19). 

Vibrational analysis. The classical normal vibrations problem can be solved if the 
mass-weighted second-derivative matrix can be constructed. The calculated 
vibrational frequencies and normal mode descriptions are a valuable link to 
experimental data. In quantum-mechanical treatments, discrepancies between 
calculated and experimental frequencies are the basis for deriving scale factors. In 
force-field calculations, the dependence of the calculated frequencies on the 
curvatures along coordinates of the force field provides an important means of 
fitting the empirical energy parameters. 

Molecular dynamics. A molecular system can be propagated forward through 
increments of time according to Newtonian mechanics, given the initial conditions 
and the forces on each of the atoms during the time increment. Because of the 
relative rapidity of bond vibrations, very short time steps must be used; thus typical 
simulation lengths on the order of hundreds of picoseconds (1 ps = 10 - 1 2 s) for 
large molecules represent a significant computational investment. Nevertheless a 
great deal of useful information has been learned about the short-time behavior of 
biological and non-biological systems, and comparisons to relevant experimental 
data have generated substantial confidence in the validity of molecular dynamics 
simulations. A good review of biological applications of dynamics is the volume by 
Brooks, Karplus, and Pettitt (20); a corresponding volume for the materials sciences 
is that of Allen and Tildesley (21). 
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1. G E L I N Current Approaches in Computer-Aided Molecular Design 5 

Other types of computations which may use the conformations derived by 
energy-modeling methods, but do not themselves require or make use of the 
energy, include the following, to name just a few: 

• calculation of molecular properties such as electrostatic fields, hydro-
phobicity, lipophilicity, etc. 

• calculation of solvent-accessible or other molecular surfaces, and rendition 
of the molecular properties on these surfaces. 

• comparison of molecules, using either atom-atom correspondences, other 
criteria, surfaces, properties, etc. 

• Quantitative Structure-Activity Relationships (QSAR), in which the 
molecular features, or simple properties dependent on them, of a series of 
related molecules, are correlated with activity or bio-assay data. The ability 
to consider not only flat structural diagrams but also calculated three-
dimensional structures has led to a more advanced version sometimes called 
3D QSAR, in which the spatial orientation of groups can be correlated with 
the activity data. 

As such techniques become more affordable from the standpoint of 
computational requirements, and better validated through experience and many 
applications, they assume the status of reliable tools that can be used by more and 
more scientists. Of course, new methods are always under development; there is 
great current interest, for example, in de novo drug design programs which use 
spatial pharmacophore hypotheses and a library of functional building blocks to 
construct novel molecules that may improve on the binding or effector properties of 
known molecules, while also having other more desirable characteristics. Many 
new methods of molecular simulation and analysis can be anticipated to augment 
the above schematic outline of available techniques. 

Applications 

For both biological and non-biological systems, the increasing availability of 
atomic-level descriptions invites applications of the computational techniques just 
outlined. The separation of application topics into life sciences and materials 
science is convenient, but not necessary, as the two can make use of common 
techniques and both may be involved in problems such as drug delivery or 
synthetic biomaterials. 

Among the life sciences perhaps the leading application, in terms of intensity 
of use and investment in equipment, people, and software, has been rational drug 
design. In many cases, modeling activities center on the small medicinal molecules 
of interest, and the full range of techniques outlined above may be brought to bear 
on the problem. In those cases where the molecular biology of the system has been 
characterized, the enzymes and other biological macromolecules involved can be 
included in the molecular model. In both basic and applied research, modeling 
techniques have been employed to study structural proteins, immune system 
proteins (antibodies), carbohydrates, lipids, and nucleic acids. Of interest as well 
are interacting molecules, as in enzyme-ligand complexes, DNA-drug complexes, 
DNA-protein recognition, and so on. 

Applications in non-biological systems include (among many others) solid 
catalysts such as zeolites and activated metals; the formation and morphology of 
crystals; phenomena at surfaces and interfaces; material properties of synthetic 
polymers; and optical and electronic materials. 

A few examples illustrate how techniques developed in one application area 
have found use in quite different contexts. 
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Motion of small molecules in media. Investigation of the structure of hemoglobin 
raised the question of how oxygen molecules could travel from outside the globin 
to their binding site at the heme group. Simple grid searches of the protein with an 
0 2 probe showed that available channels were narrow, and a high activation energy 
would be required for passage of the oxygen through them. Molecular dynamics 
studies showed that fluctuations significantly enlarge the channels, and helped 
rationalize the situation (22). Years later, similar dynamics simulation techniques 
have been employed to model the diffusion of gas molecules in amorphous 
polymers (23, 24). 

Internal motions and relaxations in solids. N M R evidence (25) of aromatic ring 
flipping in proteins in solution were corroborated by early modeling studies (26) 
which calculated the potential barrier for such motions using the adiabatic mapping 
technique described above. Sixteen years later, similar calculations were used to 
analyze such motions in a glassy polycarbonate (27). In both cases, the ability of 
the surrounding material matrix to make slight adjustments permitted these large-
amplitude motions, which would be impossible in a truly rigid structure. 

Dynamical description of structures. General recognition of the existence and 
significance of microscopic motions, based on many more examples than the above 
two, has led to attempts to describe structures in terms of more than a single set of 
fixed coordinates. For biological macromolecules, crystallographers have long been 
familiar with this issue and are actively studying ensemble descriptions (28). The 
importance of dynamical fluctuations is also recognized in solid-state contexts (29). 

Increasing use of modeling and simulation is fueled in part by the development 
and validation of new techniques, as mentioned at the end of the previous section. 
Equally important, however, is the steady growth in structural knowledge at the 
atomic level, afforded by new applications of diffraction, spectroscopy, micros
copy, etc. Both factors will contribute to an increasing breadth of applications in 
the future. 

Modeling Paradigms 

Modern computer modeling techniques are certainly attractive: they keep records of 
the motion of every atom in a system, offer the ability to analyze atomic inter
actions and energy contributions in complete detail, and afford colorful, full-motion 
graphical visualization. Also, there are many opportunities for their application, as 
more chemical systems are characterized at an atomic level. But these two circum
stances alone do not guarantee a productive contribution to research. Ten and more 
years of experience have begun to show useful ways to apply the techniques, in 
what are here called modeling paradigms. These are standardized approaches that 
have been found to be generally useful, even though the details of each problem are 
different. 

To a large extent, what can be done with modeling depends on what is known 
about the system of interest. In pharmaceutical research, one modeling approach is 
appropriate when there is no knowledge of the receptor structure. When the 
receptor structure is known, additional modeling possibilities are available. Some 
techniques may be valuable in rationalizing observed assay data, while others may 
be used to suggest new compounds and predict their activities. 

The information sought also dictates the methods that are likely to be useful. In 
optical and electronic materials problems, it is likely that an electronic description 
of the system will be necessary; force field calculations may be useful to create a 
starting geometry, but phenomena that are essentially electronic cannot be 
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1. GELJN Current Approaches in Computer-Aided Molecular Design 7 

addressed with force fields. Similarly, evaluating a molecular sieve as a catalyst 
may begin with force field based molecular dynamics simulations of the motion of 
small molecules in the sieve framework, but a detailed description of the catalytic 
events would require calculations of how the catalyst interacts with the substrate's 
electronic structure. 

Below is a sampling of modeling paradigms that have been useful in various 
situations. This is by no means a complete listing, but provides some idea of major 
applications in which simulation and modeling methods have been widely applied, 
and in which some published experience is available to guide researchers planning 
their own projects. 

Small molecule approach (30). In many pharmaceutical research projects, the only 
structural knowledge available is of a series of bioactive molecules (inhibitors, 
agonists, antagonists, etc.). The goal of modeling is to determine a structural 
explanation for their activities and if possible to elicit the set of structural features, 
or the pharmacophore, responsible for activity. The modeling paradigm in this case 
involves building models of the bioactive molecules, examining their conforma
tional possibilities using the conformational search technique, and then by trial-
and-error or more advanced means, finding a common alignment that places 
important functional groups of each molecule in similar spatial orientations. The 
resulting pharmacophore hypothesis can be used to suggest new candidates as the 
basis for rational drug design by inspection of the model, by searching a database 
for (sub-)structural similarity, or by de novo design software. As more candidates 
are tested, and more quantitative information becomes available, structure-activity 
relations may be developed, using either traditional physico-chemical or 3-
dimensional structural descriptors. In part, the rational design cycle is an 
optimization process intended to produce increasingly specific and active 
candidates; however, it also encompasses the introduction of completely new and 
structurally diverse leads which may afford new insights into the design task. 

Structure-based design (31). As structure-determination tools and structural 
knowledge improve, there are more cases in which the receptor structure (alone or 
complexed with a ligand) is known. In this case, while all the techniques of the 
small molecule approach are still appropriate, the focus shifts toward analysis of the 
spatial and energetic aspects of the enzyme-ligand complex and involves modeling 
of the macromolecular receptor as well as the ligand. New candidates can be 
developed by the means mentioned above; additionally, it is possible either through 
co-crystallization or modeling to learn much more about how the candidate 
interacts with its receptor, and to correlate this information with the assay results. 
Drug design in this case can be considered as an attempt to manipulate steric bulk, 
electronic charge, and other factors so as to develop the optimal inhibitor or 
effector. An inhibitor may only be required to bind irreversibly and block an active 
site to prevent other molecules from entering it, while an effector may have 
modified reactivity and physico-chemical characteristics which enable it to initiate 
or participate in a physiologically important process. Obviously there are additional 
and more challenging modeling tasks involved in the latter case. 

Novel lead generation. The emphasis in the first two paradigms was on optimiza
tion of existing candidates. Testing diverse new structures may also be valuable in 
finding truly novel leads, and recent synthetic work to facilitate combinatorial 
libraries (32, 33) has created increased interest in this approach. The ability to 
generate large numbers of related structures in a combinatorial family will raise 
new requirements for rapid screening assays and for new computational tools to 
record and analyze the large data streams this technique will create. 
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Integration of databases and modeling. One rich source of leads already in the 
possession of most companies is their proprietary database of compounds and their 
properties as learned from prior screening and assays. Publicly available databases 
also add to the store of available information. Until recently only two-dimensional 
structures were stored in such databases, and one could search for common 
substructural elements. Now the three-dimensional implications and possibilities are 
increasingly taken into account, either by explicit storage of three-dimensional 
structures in databases or by methods that generate some or all of this information 
on demand (34). Database searching can be used to find structures conforming to 
pharmacophoric elements defined by the procedures mentioned thus far, or to 
search for structures complementary to a hypothesized receptor (35). 

Protein homology modeling. Modern molecular biology techniques and the 
Human Genome Project are producing genetic sequences (and the corresponding 
protein sequences) at a rapid and increasing rate. The usefulness of protein 
sequence data is compromised by the lack of a solution to the protein folding 
problem. A valuable modeling paradigm uses structural knowledge accumulated 
over years of solving protein structures to build new structures by homology to 
known ones (36, 37). Well-studied and widely applied techniques are available to 
evaluate the similarity and degree of homology of a new sequence to those in a 
sequence database, fold the new sequence onto a known structure, alter sidechains 
and place them correctly, smooth or anneal regions where deletions have occurred, 
and add trial structures for insertions. Ref. (36) even suggests that homology 
modeling techniques will become the standard for practical applications, and that 
protein folding will recede to a problem mainly of theoretical interest. 

Polymer structures and properties. While many materials science applications of 
modeling are more recent than the bio/pharmaceutical studies, standard techniques 
have emerged in some areas; one is the evaluation of polymer structures and 
properties (see Ref. 17). The difficulty of building dense, amorphous polymer 
networks has been mentioned, but such models have been successfully generated 
many times. Subsequent molecular mechanics and dynamics studies, either at 
equilibrium or with applied deformations or strains, provide detailed information 
about morphology, thermal fluctuations, relaxation processes, and material moduli. 

Catalysis simulation. As mentioned at the beginning of this section, molecular 
sieves have been modeled and studied with molecular dynamics, both to understand 
the vibrations of the framework and to understand the diffusion of guest molecules. 
Once binding sites or loci of high occupation have been found, electronic structure 
calculations can be applied to learn how the host perturbs the guest's electronic 
structure to induce the catalysis process. 

Trends and Prospects 

Scientific research has always entailed a healthy interplay between new problems 
and new techniques. While some researchers concentrate on the development and 
extensions of methods, others will rely on them only when they have been widely 
applied and validated. Simulation methods in chemistry are in a state of rapid 
development, with some of the techniques cited above reduced to routine practice, 
and others requiring further improvement, evaluation, and testing on model 
systems. Quantum chemistry methods, despite their long history, are still 
developing, especially in applications to larger molecules and non-first-row 
elements. Force fields, with their empirical content, require careful validation. 
Parameter development activities are a regular feature of force field research, 
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1. G E L I N Current Approaches in Computer-Aided Molecular Design 9 

especially as modern force fields attempt to cover a wider range of molecules, in 
both gas and condensed phases, while accounting simultaneously for vibrations, 
conformer relative energies, noncovalent interactions, and effects of solvent. 

Without going into detail, a number of general directions in computer-aided 
molecular design techniques can be identified. Underlying them all is the continu
ing progress in computer speeds and capacities, which shows no sign of slowing for 
at least the next few years. The desktop computer of the mid-1990s will easily 
equal the supercomputer of just a decade ago. 

Thus compute-intensive methods such as quantum chemistry calculations will 
be increasingly accessible to all researchers, while specialists can perform calcula
tions of greater accuracy and explore more geometries. Wider experience with 
different levels of approximate molecular orbital theory should allow more 
scientists to apply the appropriate method for a particular study with confidence. 

Force fields, as alluded to above, are becoming more "universal," both in terms 
of systems covered and phenomena accounted for. This, combined with competitive 
improvements in commercial software packages, should increase the range of 
problems to which force-field methods can be applied by non-experts. It should 
also be possible, in some cases, for the programs to estimate their own precision, or 
to warn users when they are about to exceed the range of applicability. 

Conformational search is a problem which, because of the combinatorial 
explosion of possible conformations, cannot be solved in closed form; nevertheless, 
as with other methods, experience with improved algorithms will give increased 
assurance of sufficient coverage of conformational space for a particular problem. 

In molecular dynamics, the growing body of results obtained over nearly 20 
years of experience with biological macromolecules, and compared with 
appropriate experimental data, generates increased confidence in the essential 
reliability of the method. A similar accumulation of experience should also improve 
the reliability of materials simulations. Advances in computer power should be 
reflected in at least three dimensions: longer simulations of the systems already 
studied; simulations of new, larger systems; and simulations performed with fewer 
approximations (e.g., more detailed potentials, better accounting for electrostatics, 
and more accurate solvent models). 

Progress is also driven by the slow but steady increase in structural knowledge, 
as revealed by advances in diffraction techniques, solution structure determination 
methods, and other new technologies such as novel forms of microscopy which are 
capable of near-atomic resolution. A structural model is the prerequisite to simula
tion and modeling, whether based on energy or not; the trend toward structural 
explanations of biological and materials phenomena is well established, even if 
critical results are not always forthcoming as soon as hoped. 

Improved visualization techniques and the availability of more computational 
capability to produce realistic graphics will help researchers to perceive the 
essential features of problems. The intuition gained will suggest new analytical 
calculations which will increase the range of tools available for understanding 
increasingly complex simulations. 

The influences of de novo design software, integration of database searching 
with modeling, and combinatorial libraries strongly suggest that rational chemical 
design will become an increasingly data-intensive process. Mass screening of both 
natural and combinatorially synthesized samples will create large amounts of data 
which must be stored and made available in a useful way. Multiplying these factors 
by the general increase in structural knowledge and the computational means to 
search the conformational spaces of molecules leads to a future scenario in which 
the chemical design team will work with much more data than a few structures or 
structural models of lead compounds and putative receptors. Instead, whole 
computational libraries will have to be considered in conjunction with detailed 
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10 COMPUTER-AIDED MOLECULAR DESIGN 

three-dimensional representations of receptors. This does not suggest that all 
members of the chemical design team must become computational chemists; rather, 
they will need convenient access to high-quality data retrieval and graphics tools to 
enable them to plan their laboratory work in the increasingly data-intensive context 
outlined without spending undue time learning about computers and theories. 

Challenges remain in fundamental applications. Rational design, as for example 
the design of non-peptide analogs, has proven to be a difficult problem. Optimizing 
an inhibitor to block an active site has turned out to be more complicated than 
simply sketching a molecule with enough steric bulk to plug a void; improving the 
effector properties of a small molecule is an even more complex task, as it may 
require modifying the reactivity of the molecule as well as its shape and physical 
properties. 

Challenges also remain in making simulations increasingly realistic and 
relevant. In biological systems this means, in addition to including solvent, 
considering the characteristics of the biological milieu (such as pH, ionic strength, 
solubility and partition coefficients, and passage through membranes). It will be 
necessary to address problems of ADME (absorption, distribution, metabolism, and 
elimination) which have been heretofore considered too complex to model at an 
atomistic level. For non-biological systems it means improved large-scale models, 
longer simulations, an understanding of where electronic effects must be included, 
and the proper level of theory to apply then. 

This overview has presented many reasons for optimism about the promise of 
computer-aided molecular design at the atomistic level. These must, of course, be 
weighed against the formidable array of challenges, and the experience that new 
techniques may not be ready for application as rapidly as sometimes hoped. On 
balance, it seems that expectations of continued progress are justified and that 
computer simulation and modeling will play a growing role in pharmaceutical, 
agrochemical, and materials research. 
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Chapter 2 

Molecular Modeling and Quantitative 
Structure—Activity Relationship Studies 

in Pursuit of Highly Potent Substituted 
Octanoamide Angiotensin II Receptor 

Antagonists 

Donald B. Boyd1, Alan D. Palkowitz, Κ. Jeff Thrasher, 
Kenneth L. Hauser, Celia A. Whitesitt, Jon K. Reel, Richard L. Simon, 
William Pfeifer, Sherryl L. Lifer, Kumiko Takeuchi, Vasu Vasudevan, 

Aaron D. Kossoy, Jack B. Deeter, Mitchell I. Steinberg, 
Karen M. Zimmerman, Sally A. Wiest, and Winston S. Marshall 

Lilly Research Laboratories, Eli Lilly and Company, 
Indianapolis, IN 46285 

Findings from computational studies on novel nonpeptide angiotensin Π 
(AT1) receptor antagonists were confirmed experimentally. To discover 
novel antihypertensives, several series of substituted 4-
phenoxyprolyloctanoamides containing an imidazole ring were derived 
from substituted 4-amino-N-imidazolyl-2-octanoic acids previously 
disclosed by our laboratories. The title compounds interact with the AT1 

receptor in a highly stereospecific manner and define a subsite of the 
receptor not accessed by losartan, a well-known nonpeptide AT1 

antagonist. Molecular modeling correctly predicted the more active 
enantiomer of the N-imidazolyl-2-octanoic acids. A quadratic 
relationship between binding affinity and computed octanol/water 
partition coefficient for the para substituted phenoxy derivatives was 
found. Optimal in vivo pharmacology was achieved with triacids 
LY301875 (p-CH2COOH, pK B = 9.6) and LY303336 (P-CH 2 PO 3 H 2 , 
ρΚB = 9.1), both of which are orally bioavailable. 

The renin-angiotensin system (RAS) plays an important role in the regulation of blood 
pressure and fluid balance under normal and various pathophysiological conditions (7-
4). Angiotensin II (All) is the octapeptide Asp-Arg-Val-Tyr-Ile-His-Pro-Phe 
produced as the bioactive end product of the RAS cascade (Figure 1). A powerful 
vasopressor, A l l exerts its effect through membrane-bound receptors coupled to G 
proteins in smooth muscle and other cells (5-8). Interaction of the hormone with 
guanine nucleotide-binding, regulatory protein-coupled receptors, such as Gq (9), 
stimulates phospholipase C, which in turn leads to production of inositol 1,4,5-
trisphosphate, release of Ca^+ from the endoplasmic reticulum, and finally contraction 

Current address: Department of Chemistry, Indiana University—Purdue University 
at Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202-3274 
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angiotensinogen 
Asp-Arg-Val-Tyr-lle-His-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser-... 

I 
RENIN 

RENIN inhibitors 
angiotensin I 

Asp-Arg-Val-Tyr-lle-His-Pro-Phe-His-Leu 

I 
ANGIOTENSIN CONVERTING ENZYME 

ACE inhibitors R 

angiotensin II 
Asp-Arg-Val-Tyr-lle-His-Pro-Phe 

ANGIOTENSIN III 

Figure 1. The renin-angiotensin system (RAS) cascade, which results in the 
biosynthesis of angiotensin Π, can be blocked at the points indicated. 

of myofilaments. In addition, A l l elicits hypertension indirectly through stimulating 
release of other hormones, such as aldosterone, vasopressin, and norepinephrine, 
affecting vasoconstriction and renal sodium absorption. 

The antihypertensive pharmaceutical market is huge, amounting to several 
billion dollars per year. For treating hypertension, the common therapeutic 
intervention point in the RAS cascade is blockage of angiotensin converting enzyme 
(ACE). Although A C E inhibitors, such as captopril, enalapril, and lisinopril, have 
been widely used, the occurrence of minor side effects (10-12), such as dry cough, 
and potentially severe adverse reactions, such as angioedema, has stimulated research 
interest in other intervention points in the RAS pathway. Moreover, chronic use of 
A C E inhibitors allows increased renin activity and therefore rebound of ΑΠ levels 
toward normal. Shortcomings of available antihypertensive therapies have been 
attributed to less than optimal lowering of blood pressure (13). 

Drug Design Strategies 

One strategy for discovering new antihypertensive agents is to inhibit the aspartyl 
protease renin, but progress by groups using this approach was thwarted by the need 
to find peptide-based compounds that would be orally bioavailable (8,14-18). 
Another strategy has been to block the binding of A l l to the receptor directly 
responsible for vasoconstriction; a possible advantage is that the intervention would 
occur regardless of the source of the AIL This latter strategy was originally based on 
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peptidic compounds like saralasin (79), which, being peptidic, had poor oral 
bioavailability and short duration of action. However, recentiy, dramatic progress has 
been achieved with nonpeptide structures as described below. 

The A T l receptor, one of at least two receptor subtypes for A l l (20-23), 
mediates blood pressure response and other known physiological actions of AIL 
Cloning and expression (24,25) of the A T i receptor have been achieved. [The 
primary structure and function of another A l l receptor, called AT2, are still under 
study (26).] In principle (27), one could rationally design A T l inhibitors from three-
dimensional structural information about the target receptor protein and/or the natural 
ligand ΑΠ. However, other than the general concept that the A T i receptor adopts the 
familiar tertiary structure with seven transmembrane alpha-helices, there is no detailed 
structural information on the receptors. Regarding A l l itself, this linear octapeptide 
can adopt a multitude of conformations. There is no consensus on the most probable 
conformations or on the bioactive conformation (19,28-32). Some workers have 
advanced the opinion that some sort of U-shaped conformation predominates, 
whereas others have used various linear conformations. Details of the backbone and 
side chain conformations remain open to further study. Conclusive proof that any 
proposed conformation is physiologically relevant remains to be established. 

In this situation, the more traditional method of screening and following up on 
leads with structure-activity relationship (SAR) studies is appropriate. This paper 
reports applications of computational chemistry within the latter context. Much of the 
literature of computer-aided molecular design (CAMD) deals with method 
development, or retrospective studies, or simply calculations for the sake of 
calculations with no immediate or long-term implications for designing molecules. On 
the other hand, in a large, fast-paced drug discovery effort, computational 
methodologies must be applied that can obtain answers rapidly and as reliably as 
possible (27). In dynamic, collaborative research, modeling must be able to respond 
quickly to not only changing priorities, but also to changes in experimental data and 
interpretation as more replicate experiments are being done. The present work 
demonstrates that molecular modeling and quantitative structure-activity relationship 
(QSAR) methodologies can make practical contributions to an ongoing SAR project. 

Medicinal Chemistry Background 

In the early 1980s, Takeda scientists discovered iV-benzylimidazole-5-acetic acids 
(Figure 2) to be weak, but selective, nonpeptide ΑΠ antagonists (33). Using these 
leads and a hypothesis based initially on a molecular modeling alignment of the lead 
structures with a conformation of A l l , DuPont scientists executed an elegant SAR 
program leading to nonpeptide ΑΠ receptor antagonists that are not only specific, but 
also highly potent and orally bioavailable. Compared to the original leads, a 1000-
fold improvement in receptor binding affinity was achieved. DuPont's disclosure of 
EXP7711, DuP 753 (losartan), EXP3174, which is losartan's major metabolite in 
humans and very bioactive itself (Figure 2), and related compounds (34-38) 
stimulated a stampede of research based mainly on a 2-tetrazolyl-biphenyl motif (see, 
e.g., Ref. 39-45) Losartan is undergoing clinical evaluation as a potential 
antihypertensive, but it remains to be seen what, if any, advantages it offers relative to 
existing antihypertensive therapies (8,46,47). 

Independent of the above well-known work, a large volume screen initiated at 
Lilly in 1982 revealed LY150921 (pA2 = 4.5, Figure 3) as an initial lead compound in 
1984. The pA2 value is the negative of the logarithm of the concentration of an 
antagonist that gives a twofold shift in the dose-response curve of contraction induced 
by AIL The pA2 values were determined using rabbit aorta tissue (47,48). SAR of 
about 40 compounds found the octanoic acid tail (LY237117, pA2 = 4.9) to be 
advantageous. Further synthesis of 150 compounds yielded LY254562 (pA2 = 5.6) 
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2. B O Y D E T A L . Molecular Modeling and QSAR Studies 17 

with a hydrogen-bonding group on the ortho position of the phenyl. Early progress in 
this series has been disclosed (49), and a low energy conformation of A l l was 
constructed in hopes of rationalizing the data (50). An acidic group directly on the 
ortho position, i.e., LY266099, which was obtained after an SAR of another 140 
compounds, further improved potency to pA2 = 6.2. Continued modifications on the 
aromatic ring showed that acidic substituents were helpful to potency, particularly at 
the ortho position, and, in fact, introduction of the oriAo-sulfonic acid of LY280134 
(pA2 = 7.1) resulted in a significant improvement. Further elaboration of the SAR is 
given elsewhere (51-59). 

n-Bu^ Ν 

CI 

COOH 

cpd 
S-8307 
S-8308 

X C5o(uM) 
CI 40 
N 0 2 15 

cpd 
EXP7711 
losartan 
EXP3174 

R 5 

CH2OH 
CH2OH 
COOH 

R 2 ' 
COOH 
CN 4 H 
CN 4 H 

Ιθ5θ(μΜ) 
0.30 

0.019 
0.0013 

Figure 2. Chemical structure of Takeda leads from patent literature and the 
DuPont Merck compounds. 

40 
ο V N 

Ν 150 

COOH 

LY150921,pA 2 = 4.5 

COOH 
LY237117, p A 2 = 4.9 

COOH 

COOH 

LY254562,pA 2 = 5.6 

COOH 

LY266099, p A 2 = 6.2 

2-COOH, 3-OH 
LY235656,pA 2 = 6.8 
2-CN4H 

LY235658, p A 2 = 6.9 
2-SO3H 
LY280134,pA 2 = 7.1 COOH 

Figure 3. Early history of the ΑΠ project at Lilly. 
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Computational Methodology 

The techniques used here have been described in the book series "Reviews in 
Computational Chemistry" (60). Molecular modeling was done with the S Y B Y L 
software system, Version 5.5 (61-65). Octanol/water partition coefficients, in the 
form logP0/w» were computed from molecular topology using the CLOGP program 
(65-68). Data was analyzed with the statistical program JMP 2.0 (69). 

Elucidation of Molecular Shape and Pharmacophore 

In 1989 when molecular modeling was initiated on the N-imidazole-2-octanoic acid 
series (Figure 3), it had been thought that these compounds were completely different 
structurally and otherwise from DuPont's 2'-tetrazolyl-biphenyl series, which was 
beginning to be disclosed (Figure 2). Molecular modeling first addressed the basic 
question of what conformational similarities and differences existed between the two 
sets of compounds. 

A systematic conformational search was done on losartan and a representative 
member of the AMrnidazole-2-octanoic acid series (Figure 4). Each structure, built by 
sketching it into the computer, was energy minimized with the TRIPOS force field 
using defaults, except as noted. Torsional angle adjustments were made to the models 
to assure they were in reasonable (i.e., extended) starting conformations, and the 
minimizations were repeated until the structures were satisfactory. With S Y B Y L , it is 
necessary to run a minimization 300, 600, or more iterations before phenyl rings are 
flat and other obvious distortions are relieved. The calculations were done on the 
unionized solute molecule without solvent molecules because of the known 
shortcomings of the TRIPOS force field in dealing with charge interactions (70). 

OH 10 

Figure 4. Chemical structures of LY235656 (left) and losartan (right) shown with 
rotatable bonds used in systematic conformational searching and paired atoms 
used in flexible fitting. 

Energy minimization gives one conformation; the next task was to explore 
conformational space, the objective being to find the global energy conformation of 
each structure. The two three-dimensionalized structures from the energy 
minimizations were subjected to systematic conformational searches. Doing the 
systematic search on more than 10 rotatable bonds would take prohibitively long on a 
V A X superminicomputer, so only the important torsional angles (Figure 4) were 
varied, the other torsional angles and all bond lengths and bond angles being fixed at 
their previously optimized values. With an understanding of the conformational 
adaptability of alkyl chains and an indeterminacy of their receptor-bound 
conformation, torsional angles between the terminal four carbons of the chains were 
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not varied. An angle increment of 30° was used for each rotatable bond through 360°. 
In trial runs, no energy cutoff (i.e., no conformations were excluded), a high energy 
cutoff (10 kcal/mole), and a low energy cutoff (4 kcal/mole) were tried, but use of a 
cutoff was, of course, immaterial to the main objective. The set of torsional angles 
giving the lowest energy for rigid rotations will be referred to as the global energy 
minimum conformation; this conformation could be reminimized to fine-tune the bond 
lengths and angles, but, as we will see in a moment, the conformation will be 
subjected to further adjustments when it is fit to the other molecule. 

Overall, the SYBYL-predicted global energy minimum conformation of 
losartan appeared reasonable. The two rings of the biphenyl moiety of losartan were 
predicted to prefer a twisted conformation. Such a conformation is consistent with a 
subsequently reported crystallographic structure (41) of EXP7711, which is the ortho-
carboxyl acid analog of losartan. 

The global energy minimum structures of losartan and LY235656 were 
flexibly fitted together. In contrast to rigid least-squares fitting, flexible fitting allows 
each of the structures being aligned to relax bond lengths, bond angles, and torsional 
angles, subject only to the constraints of the molecular mechanics force field and 
additional spring constants between atoms designated to overlap (Figure 4). Four 
carbon atoms of the respective alkyl chains, three atoms of the respective ortho acidic 
groups, and three atoms of the respective hydrogen bonding functionalities (C-O-H) 
were used to align the molecules, thereby giving roughly equal importance to each 
potential pharmacophoric region. A force constant of 5 kcal/mole-Â^ between 
designated atoms was used, which is low enough not to introduce unreasonable 
structural distortions, but large enough to bring the paired atoms in proximity if 
conformationally feasible (71,72). 

The resulting alignment shows a strong and surprising degree of similarity in 
size and shape of losartan and the N-imidazole-2-octanoic acid series (Figure 5). The 
discovery was a major revelation. Although the modeling result was unanticipated, it 
was consistent with two experimental observations: both the AMmidazole-2-octanoic 
acid series and the losartan series bind to the A T i receptor, and correlations between 
binding affinity and certain molecular properties (vide infra) are shared by the two 
series. 

Figure 5. Stereo molecular graphics of the structures from flexibly fitting the 
global energy minimum conformations of LY235656 (black) and losartan (gray) 
with the TRIPOS force field. 

The conformations depicted in Figure 5 deserve further comment. They are 
not necessarily the only conformations of the two molecules that may align, and the 
overlapping structures are not necessarily relevant to the receptor-bound conformation 
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of the antagonists. It is quite probable that in reality the two molecules could have the 
alkyl chains in any number of other overlapping conformations. The chains are 
flexible enough and close enough in space that they could fit in the same hydrophobic 
groove of the ΑΠ receptor. 

According to the TRIPOS force field, losartan's predicted conformation has 
the 6>rf/i0-tetrazole group folded back toward the η-butyl chain, and the molecule 
adopts a V-shape. The same V-shape was predicted for the AMmidazole-2-octanoic 
acids and most of the other molecules treated. This aspect of the shape is thought to 
be an artifact of the force field overestimating nonbonded attractive forces in the 
absence of solvent. Nevertheless, the S Y B Y L calculations should suffice for 
purposes of illustrating similarities and differences in molecular shape. In other 
words, the goal was to obtain a comparison of conformations, so as to answer the 
question of whether it was feasible for the two series of compounds to bind to the 
same three-dimensional receptor. It is possible that in the receptor the phenyl rings 
bearing the ortho-acid could be flipped ca. 180° from the way they are depicted in 
Figure 5. Such a conformational change would maintain overlap of the acidic groups 
but would increase the distance between the hydrophilic, anionic group and the 
nonpolar, hydrophobic alkyl chain. Otherwise the overall molecular shape depicted in 
Figure 5 is quite feasible as a bioactive one. 

The molecular modeling results allow the pharmacophore shown in Figure 6 to 
be inferred. The butyl and hexyl chains, the carboxylate and hydroxymethyl, and 
carboxylate and tetrazole moieties match well. On the other hand, the imidazole rings 
of the respective molecules do not overlap, and, in fact, are not even in the same 
plane. The implications of this are that there is no pharmacophoric atom in the 
imidazole (cf. all the imidazole surrogates that have been used in losartan analogs) or 
that the receptor site residues can change conformation to accommodate either position 
of the imidazole. The modeling suggests that it would be possible to direct SAR at 
modification of the central part of the ^V-imidazole-2-octanoic acid series without 
disturbing the pharmacophore defined by the peripheral groups. 

Figure 6. Pharmacophore for angiotensin II receptor antagonism as initially 
determined by similarity in shape and functionality of the Lilly and DuPont series. 

Ligand Design Based on Pharmacophore 

The discovery of the similarity of the molecules shown in Figure 5 immediately 
suggested that it should be possible to evaluate molecular modifications in the N-
imidazole-2-octanoic acid series using as a criterion whether the new structures could 
achieve the common pharmacophoric arrangement that we found. New structures that 
were under consideration for synthesis could be evaluated by molecular modeling, and 
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the results could be factored into the prioritization of which structures should be 
prepared and tested. 

For each such structure tested in the "computational screen," the following 
steps were employed: (1) construction of molecular model on the computer, (2) 
thorough energy minimization, (3) systematic conformational energy search using the 
energy minimized structure, (4) flexible alignment of the resulting global energy 
minimum conformation with that of losartan. Details of the molecular modeling were 
the same as described above. 

For the flexible fitting step, the S Y B Y L program produces molecular 
mechanics energies of the two structures before and after the fit. Because the starting 
geometry in each case is at or near the global energy minimum, the final energy of the 
fit structures represents the increase in energy necessary for the new structure to adopt 
a pharmacophore like that in losartan. The TRIPOS force field used by S Y B Y L is 
adequate for many purposes, but it was felt that it was not accurate enough to 
discriminate between small energy differences in the structures under consideration. 
Consequently, the following decision tree was used. If the energy increase was less 
than about 5 kcal/mole, a structure was deemed capable of adopting the target 
pharmacophore easily. On the other hand, if the energy increase was greater than 10 
kcal/mole, then that was considered to be prohibitively expensive in terms of energy. 
If the energy increase was between 5 and 10 kcal/mole, this was a gray area where the 
molecular modeling could not make a definitive statement. 

Computer resources allowed only about one molecule to be run through the 
protocol per week (with step 3 above being rate limiting), while the large team of 
synthetic chemists could generate new compounds at a faster rate than was possible to 
evaluate computationally. There is insufficient room in this paper to describe each of 
the structures that were evaluated during the course of research. Generally, however, 
it was found that the protocol, despite its simplicity, correctly predicted whether or not 
a modification was advantageous if the modification involved conformational and 
shape issues. For modifications affecting other determinants, such as lipophilicity or 
charge distribution, then the molecular modeling was unrelated to the activity-limiting 
property. The next two sections present two examples of how our molecular 
modeling protocol proved useful. 

Prediction of Bioactive Enantiomer 

Early in the project, it was not known if one enantiomer of the iV-imidazole-2-octanoic 
acids would have more activity than the other. Molecular modeling was applied to 
address this question. Using the protocol described above, the (R) enantiomer, which 
was the one used in the original modeling, fit the losartan template well as already 
reported. However, the (5) enantiomer, if forced into the model pharmacophoric 
conformation, was computed to have an energy increase in the prohibitive range. On 
this basis, it was predicted that there would be a difference in biological activity of the 
enantiomers, and (R) would be more active than (5). 

As the chemistry advanced, new members of the series were synthesized, 
separated chromatographically, and tested separately. One isomer consistently had an 
approximately tenfold higher affinity constant in the rabbit aorta assay than the other. 
However, it was impossible from N M R or other available analytical means to assign 
absolute stereochemistry, so they were simply labeled A and B. 

About two years after the prediction of the more active enantiomer, an 
intermediate LY298162 (Figure 7) was finally found that formed crystals suitable for 
small molecule x-ray diffraction. The compound was an intermediate that could be 
related unambiguously to the less active enantiomer. The crystal structure (Figure 7) 
proved the compound to be (5). Thus, the molecular modeling prediction was 
correct, i.e., the compound better able to meet the pharmacophoric requirements had 
the (R) configuration at the 2 position of the octanoic acid. 
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Figure 7. (left) Crural center in the octanoic acid series and the chemical structure 
of LY298162 which was determined by x-ray crystallography, (right) Stereo 
molecular graphics of the crystalline state structure of LY298162. The chiral 
center in the octanoamide is (S). The two chiral centers in the proline ring are also 
(5) as in the natural form of the amino acid. Note that the hexyl chain is not all 
and; there is one gauche interaction, probably due to crystal packing forces. 

Modification of the Central Region 

Molecular modeling suggested that there would be ways to rigidify or otherwise 
modify the central region of the AMmidazole-2-octanoic acids (Figure 6). Replacing 
the amide group with appropriate aromatic rings offered the possibility to keep the 
pharmacophoric groups in the desired spatial position, but on new scaffolds (Figure 
8). This line of reasoning stimulated the design and synthesis of new series with the 
imidazole replaced by indole, benzimidazole, and indazole rings. Pleasingly, some of 
these modifications led to improvement in the pA2 values (Figure 9). 

Figure 8. Concepts for introducing aromatic rings fused to one of the existing 
rings in the N-imidazole-2-octanoic acids series so as to constrain the 
conformational possibilities and to change polarity in the region between the 
imidazole and the tfrf/iosubstituted terminal phenyl ring. 

Molecular modeling again showed a dramatic similarity in shape that the N-
heterocycle-2-octanoic acids and the 2'-tetrazolyl-biphenyl series are able to reach. 
An indole analog in our series and DuP 532, which is a more potent, second 
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generation analog of losartan (73) (Figure 10), were used in the computational 
protocol. The alignment of Figure 11 shows the imidazole rings of the two molecules 
do not overlap at all and, in fact, are nearly orthogonal. However, the lipophilic alkyl 
chain, the ortho acidic group, and the hydrogen bonding functionality coincide in 
space extremely well. It is also worth noting that the bicyclics render the imidazole 
series more biphenyl-like because an aromatic ring replaces the amide linkage. 

LY285434, pA 2 = 7.7 LY288691, pA 2 = 7.0 LY288715, pA 2 = 7.4 

Figure 9. Angiotensin II receptor antagonism of benzoheterocyclic derivatives of 
the AMmidazole-2-octanoic acids. The indole showed higher binding affinity than 
the indazole, the benzimidazole, and the corresponding ori/io-tetrazole-substituted 
imidazole LY235658 (Figure 3). 

Figure 10. Chemical structures of an early member of the indole series (left) and 
DuP 532 (right), which has 4-pentafluoroethyl instead of the 4-chloro substituent 
of losartan. These structures were used in molecular modeling. 

Substituents Effects 

QSAR analysis is useful for showing trends between a molecular property and 
biological activity. These trends can help guide the SAR away from dead-ends and 
toward promising molecular modifications. After the ortho-suXïomc acid derivative 
(LY280134, Figure 3) was synthesized and tested, a relationship between in vitro 
activity and acidity of the ortho substituents was quantitated. The p K a of this group 
and the compound's pA2 value could be fit with a linear regression. The initial 
relationship was demonstrated using approximate p K a values from reference 
compounds (74-76). This relationship was later confirmed experimentally by 
determination of the pK a ' s of the derivatives shown in Figure 12. It was thus 
possible to use this information to redirect the SAR from further substitutions on the 
phenyl ring, which already seemed optimized in terms of bioactivity, toward other 
regions of the molecule. 
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Figure 12. Angiotensin Π antagonism in the AMmidazole-2-octanoic acid series 
increases as the ortho group on the terminal phenyl ring becomes more acidic. 
The regression equation and line are shown. 

Subsequent to our finding the inverse pA2-pK a relationship for our series, 
workers at DuPont reported that they had independently found a similar relationship 
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for their ^-imidazolylmethylbiphenyl series (37). The relationship they found, using 
estimated pK a ' s , is shown in Figure 13. Potency increases roughly with more acidic 
ortho substituents. 

40 

estimated pKa 

Figure 13. Regression relating IC50 values for angiotensin II antagonism and 
acidity of the ortho group on the terminal phenyl ring in the N-
imidazolylmethylbiphenyl series. 

Another QSAR that was found involved the lipophilicity of the AMmidazole-2-
octanoic acid series with various substituents on the acid-bearing terminal phenyl ring 
(Figure 14). Compounds that were more hydrophilic (lower logP 0/w values) were 
generally less active. This relationship, albeit weak, is consistent with work on the 
losartan series which concluded that the terminal phenyl ring fits into a hydrophobic 
pocket (34). Making this end of the ligand nonplanar, i.e., replacing the phenyl ring 
with various cycloalkenyls, also reduces activity (47f48). 

As the SAR evolved in the octanoic acid series, the octanoic acid itself was 
derivatized in various ways including linkage to a proline through an amide bond. 
This modification was introduced with the hope of reducing serum albumin binding 
and increasing oral bioavailability. Because the chemistry for the imidazole series was 
easier than for the benzoheterocyclic series, and because the bioactivity profile of 
proline-containing imidazole compounds proved to be good, SAR work shifted back 
to the imidazole series. Chemistry on the proline ring itself showed that introduction 
of a 4-phenoxy substituent on the proline further enhanced potency. 

QSAR analysis of the substituent variation at the para position of the phenoxy 
ring suggested that bioactivity was related parabolically with logP 0/w values (Figure 
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15). Making this region of the ligand too hydrophilic or too hydrophobic was 
deleterious. Continued SAR on the phenoxy ring (Figure 15) confirmed the existence 
of a parabolic relationship between pA2 values and logP 0/w values. LY301875 (p-
CH2COOH, ρΚβ = 9.6) was among the compounds made. 

Figure 14. Angiotensin II antagonism in the 2-COOH set of AMmidazole-2-
octanoic acids generally increases as the substituents on the terminal phenyl ring 
make the compounds more lipophilic. logP 0/w values were computed. The 
regression equation is pA2 = (4.95±0.37) + (0.49±0.17)logP, r 2 = 0.33, ρ = 
0.0130, η = 18; 95% confidence limits are shown. 

Subsite of A T l Receptor Reached by the Phenoxyproline Octanoamides 

As will be reported elsewhere in detail (59), the /?ara-carboxymethyl congener 
(LY301875) and other compounds in the phenoxyproline octanoamide series were 
evaluated by extensive pharmacology. Not only must a ligand display high potency, 
but also other chemical and biological characteristics, such as oral bioavailability, to be 
worthy of interest. It was deemed on scientific grounds that the compound had the 
potency and other properties to be appropriate for clinical evaluation. 

LY301875 is interesting structurally in that it is a triacid and has three chiral 
centers. Interaction of the structure with the A T l receptor is highly stereospecific as 
determined by preparing all eight diastereomers of LY301875 (57). The pA2 values 
of the compounds are compared in Figure 16. Activity drops drastically if either chiral 
center on proline is (R), whereas the chiral center on the octanoamide chain is less 
influential. As depicted in Figure 17, it is thought that the long flexible alkyl chain can 
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bend to fit into an apparently narrow, lipophilic pocket of the receptor regardless of 
whether the octanoamide chiral center is (R) or (S). 

Molecular modeling (Figure 18) compares the structures of LY301875 and 
losartan. The phenoxyproline side chain occupies a receptor subsite beyond the reach 
of losartan and its analogs. The activity data for our series demonstrate that ligand 
interaction with this subsite contributes significantly to binding. The subsite is called 
P* ("P-star") in recognition of its discovery with the para-substituted phenoxyproline 
side chain. 

10.0-

9.5 H 

9.0 H 

8.5 H 

pA2 

8.0 H 

7.5 H 

7.0 H 

6.5 

\ 
\ 

OCH2cycPr \ 
• OMe • 

CH2COOH Me^SMe O C H 2 c Q O H 
-H OEt X 

S02Me 

CH20H imidazole 

CÔNH2 

-OBu \ 
OcycPent 

^ y S 0 3 H C F 3 \ 
OCFHgcycHex 

COOH 
—I 1 1 1 1 1 1 1 1 — 

5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 logP 

Figure 15. Angiotensin II antagonism in the phenoxyproline N-imidazole-2-
octanoic acid series shows a quadratic dependence on hpophilicity as it is modified 
by substituents on the para position of the phenoxy ring. The relationship 
between pA2 values and lipophilicity of the para substituted phenoxyproline N-
imidazole-2-octanoic acids was initially discovered with the compounds 
designated by small points (n = 19, r 2 = 0.49, p = 0.0046). Compounds made 
thereafter are shown as large squares. The parabolic regression line (n = 29, r 2 = 
0.39, p = 0.0016) and the 95% confidence limits are shown. The optimum 
logPo/w value is close to that of CH2COOH, which is the substituent of 
LY301875. The logP 0/w values were computed for the unionized forms of the 
structures. Although these values are not reflective of physiologic pH, the 
relationship found for the initial set of compounds was predictive. The possibility 
exists, however remote, that the acidic groups are not all ionized in the micro 
environment of the receptor site. 
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RSS 
9.9 

RRS 
6.8 

sss 

SRS 
6.1 

RRR 
6.7 

SRR 
6.3 

SSR 
6.3 

HOOC 

Figure 16. Binding affinities (expressed as pA2 values) to the A T l receptor for 
the 8 diastereomers, each of which is represented at one apex of the cube. An 
epimerization of a chiral center corresponds mathematically to moving from one 
apex to another. The three chiral centers, in order of the labels at each apex, are 
marked in the chemical structure. The most active isomer is RSS (LY301875). 

Figure 17. The alkyl chain of the (RSS) and (SSS) diastereomers bending to fit in 
the same narrow, lipophilic pocket of the receptor. 

Comparison to the Three-Dimensional Structure of Angiotensin II 

We conclude with one additional molecular modeling study. Numerous previous 
attempts to deduce the conformations of the octapeptide A l l involved applying 
physical chemical techniques and synthesizing peptides with residues replaced, 
deleted, or conformationally constrained (see, e.g., 19,29,77). These attempts 
unfortunately did not lead to a consensus on the bioactive conformation. Recently, the 
first x-ray crystallographic study of ΑΠ was reported (78). Different from any of the 
previously hypothesized conformations, the x-ray structure is twisted into somewhat 
of a corkscrew when complexed to an anti-anti-idiotypic antibody reportedly 
mimicking an A l l receptor. The crystalline state conformation may not be the true 
bioactive one either, but it is of interest to see what, if any, correspondence may exist 
between it and our antagonist. 

Numerous possibilities can be envisioned for how LY301875 and ΑΠ might 
align. The possibility shown in Figure 19 has the lipophilic alkyl chain in the region 
of the De side chain, the ori/io-sulfonic acid near the C-terminal carboxylic acid, and 
the phenoxy group arbitrarily proximal to the Tyr side chain. This alignment is 
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somewhat consistent with those other authors have assumed (31,32,38), except that 
the imidazole ring of the antagonist was not forced to be overlap with the histidine side 
chain. The precise interactions of these ligands with the A T i receptor need to be 
explored by site directed mutagenesis and other techniques. 

Figure 18. Stereo view of the overlap of the phenoxyproline octanoamide 
LY301875 (black) and losartan (gray) obtained by flexibly fitting the ortho acidic 
groups (sulfonic acid and tetrazole), the alkyl chains (hexyl and butyl), and the 
hydrogen bonding groups (proline carboxyl and hydroxymethyl). The shape and 
dimensions of the two compounds are similar except for the 4-phenoxyproline 
side chain which extends into the P* subsite. 

Figure 19. Stereo molecular graphics of an alignment of the crystallographic 
conformation of angiotensin II and LY301875. The residue sequence in the 
octapeptide is Asp-Arg-Val-Tyr-Ile-His-Pro-Phe. The Aspi residue is at the 
lower center "rear" of the figure, whereas Phes is in front of it. 
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Conclusions 

The computational chemistry work involved with this project illustrates the realities of 
their application in drug discovery. The most sophisticated academic techniques are 
not always suited for contributing to a project in a pharmaceutical research 
environment (79). Molecular modeling and QSAR proved they could provide insight 
and demonstrated predictive abilities. 

The structure-activity relationship has evolved along the branching tree 
structure shown in highly abbreviated form in Figure 20. A novel series of chiral 
nonpeptide A T i antagonists was identified that interacts with the receptor in a very 
stereospecific manner. These ligands, exemplified by LY301875 (p-CH2COOH, 
ρΚβ = 9.6), LY303336 (/7-CH2PO3H2, ρΚβ = 9.1), and related compounds, define 
a subsite of the A T i receptor. Structure-activity information derived with the aid of 
molecular modeling and QSAR is highlighted in Figure 21. The recent literature 
shows that the majority of the medicinal chemistry stemming from the disclosure of 
losartan has involved keeping the 2'-tetrazolyl-biphenyl template and replacing the 
imidazole ring by surrogates (45). In contrast, the series we have reported here is 
distinct and may offer unique pharmacological or clinical characteristics. 

in vitro in vivo 
R" K B ± S E ( n M ) K B ± S E ( n M ) 

CH 2 COOH 0.27 ±0 .05 2.8 ± 0 . 2 
C H 2 P 0 3 H 2 0.9 ± 0 . 5 1.8 ± 0 . 4 

Figure 20. Evolution of the SAR culminating in the phenoxyproline octanoamides 
exemplified by two highly potent A T i receptor antagonists with oral 
bioavailability and no agonist effect. The in vitro binding constants are measured 
with isolated rabbit thoracic aorta tissue; the in vivo data are from pithed rats. 
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Figure 21. Summary of SAR information on the phenoxyproline octanoamides. 
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Chapter 3 

Structure-Based Design of Human 
Immunodeficiency Virus-1 Protease Inhibitors 

Correlating Calculated Energy with Activity 

M. Katharine Holloway and Jenny M. Wai 

Molecular Systems Department, Merck Research Laboratories, 
West Point, PA 19486 

We have found that a simple calculated energy value, Einter, 
correlates well with the observed in vitro enzyme activity of a series of 
HIV-1 protease inhibitors. This correlation was derived employing a 
test dataset of 33 inhibitors with modifications at the P 1 and P 2 ' sites. 
It has proved valuable in the structure-based design of subsequent 
HIV-1 protease inhibitors which exhibit significant structural 
variation. In particular, it has been successful in a truly predictive 
sense, i.e. predictions of activity were made prior to synthesis. Several 
examples of this are illustrated, including a precursor (41) to a current 
clinical candidate, L-735,524 (42). 

Of critical importance to the application of computer-aided molecular design is the 
accurate assessment of the relative energy of interaction between two or more 
molecules of interest. In the design of pharmaceuticals, these molecules may 
correspond to an enzyme and an inhibitor, a receptor and an antagonist, an antibody 
and an antigen, or a D N A helix and an intercalator. Ideally, one would like the 
energetic evaluation to be as rapid as possible, while maintaining a high level of 
accuracy such that useful predictions of activity may be made in advance of 
biological testing. In the absence of accurate energetic evaluation, only qualitative 
modeling is possible, which, while useful, cannot reliably address the question of 
binding affinity. 

Historically, several approaches have been employed to calculate and/or predict 
binding affinity. The free energy of binding can be calculated directly via Free 
Energy Peturbation (FEP) calculations (7). This approach has been reported to yield 
free energies accurate to ± 1 kcal/mol with respect to experiment. However, due to 
the amount of computer time required, these calculations are impractical for routine 
assessment of the binding affinity of proposed compounds. 

Other simpler approaches have included Comparative Molecular Field Analysis 
(CoMFA) (2) and the Hypothetical Active Site Lattice (HASL) (3) method. While 
these approaches are rapid relative to FEP, they involve correlation with multiple 
calculated properties, fields, or sites, and their accuracy can be limited by several 
factors, e.g. the size and diversity of the training set of structures and the choice of 
alignment for these structures. 

0097-6156/95/0589-0036$12.00/0 
© 1995 American Chemical Society 
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3. H O L L O W A Y & W A I Structure-Based Design of HIV-1 Protease Inhibitors 37 

We report herein a single simple predictor of relative binding affinity for HIV-1 
protease inhibitors which has been highly effective in a structure-based design 
program. 

HIV-1 Protease 

The HIV-1 protease is an aspartyl protease which is responsible for processing the 
polyproteins coded for by the gag and pol genes of the HIV-1 virus, thus leading to 
production of the HIV-1 structural proteins (e.g. pl7, p24, p7, and p6) and enzymes 
(reverse transcriptase, integrase, and the protease itself) (4). Inactivation of HIV-1 
protease has been demonstrated to result in the production of noninfectious virions 
(5). Thus, HIV-1 protease inhibitors have been an attractive drug design target for 
treatment of the Acquired ImmunoDeficiency Syndrome (AIDS) (6). 

Structurally, the HIV-1 protease is a symmetrical homodimer, which contains 99 
residues and one characteristic Asp-Thr-Gly sequence per monomer. Figure 1 shows 
two views of an X-ray structure of the native form of the HIV-1 protease (7). In the 
first view, one can clearly see two β hairpin loops at the top of the structure which are 
commonly referred to as the flaps due to their dynamic nature. These flaps are 
presumably open initially to allow diffusion of the substrate or inhibitor into the 
active site and subsequently close to form both hydrogen-bonding and hydrophobic 
contacts with the small molecule. The second view is looking through the flaps at the 
active site, with the binding cleft roughly from top to bottom. The two catalytic 
aspartates are located directly below the flaps on the floor of the active site. 

Figure 1. Two views of the α-carbon trace of the native HIV-1 protease. 
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Qualitative Inhibitor Modeling 

Initially, we began our modeling of HIV-1 protease inhibitors in a qualitative sense. 
They were docked in the active site of the native enzyme shown in Figure 1 using 
conformations which were based on X-ray structures of renin inhibitors bound in the 
active sites of fungal aspartyl proteases such as endothiapepsin (8) and Rhizopus 
pepsin (9). The first compound which was modeled was L-685,434 (1), an early lead, 
which was very potent in vitro (IC50 = 0.25 nM) but lacked cell potency (CIC95 = 400 
nM) (10,11). 

R 

1 Ο 

1,R = H 

2 ,R= O C H 2 C H 2 N ^ O 

Based on the model of 1 in the active site, shown in Figure 2, it became clear that 
solubilizing groups which might affect the physicochemical and thus pharmacokinetic 
properties could be attached at the para position of the P i ' substituent. This led to an 

Figure 2. L-685,434 (1) as modeled in the native enzyme active site. A 
molecular surface is included to illustrate the fit of the inhibitor in the active 
site cavity. 
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inhibitor, L-689,502 (2), of comparable in vitro potency (IC50 = 0.45 nM) but 
enhanced cell potency (CIC95 = 12 nM) which was the first safety assessment 
candidate in this program (77). Unfortunately, it failed in safety assessment due to 
hepatotoxicity. 

When a subsequent X-ray structure was solved for the complex of 2 with HIV-1 
protease (77), it was clear that we had accurately modeled the bound conformation for 
this inhibitor as shown in Figure 3. In the X-ray structure, the para substituent on the 
P i ' aromatic group does indeed point out away from the active site towards solvent. 
Its exposure to solvent is further supported by the fact that the morpholine group is 
disordered and thus is absent from this plot. 

Figure 3. A comparison of the model of 1 (solid) and the X-ray structure of 
2 (dashed). 

Semi-Quantitative Inhibitor Modeling 

Our success with qualitative predictions led us to try a more quantitative approach. 
We looked for a correlation not only between the modeled and X-ray structures, but 
also between the calculated energy and the observed in vitro activity. 

This was accomplished via the following protocol. Protonation states for the 
titratable enzyme residues were selected based on the fact that the enzyme assay is 
carried out at a pH of 5.5. Thus we chose to make all titratable residues charged, with 
the exception of Tyr59 and AspA25» orie °f m e P a u * °f catalytic aspartates (72). A 
representative set of inhibitors was then selected to form a test dataset. This included 
16 inhibitors with modifications in P i ' and 16 inhibitors with modifications in P 2 , 
which are shown in Tables I and Π. 

Each group contained as wide a spread in activity and structure as possible. A 
model of 1 was constructed as described above and all subsequent models were 
derived from it. The inhibitor models were minimized in the enzyme active site using 
the M M 2 X force field (73), a variant of M M 2 (14). In all calculations the inhibitor 
was completely flexible and the enzyme was completely rigid. Dielectric constants of 
1.5 for intramolecular interactions and 1.0 for intermolecular interactions were 
employed. 
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Table I. Experimental IC50 Values and Calculated Enzyme»Inhibitor Intermolecular 
Energies for the P i ' Training Set of HIV-1 Protease Inhibitors. 

No Ri R2 R3 IC50 
nM 

pIC50a ENat b EAcPepc E502d 

1 CH 2 Ph H H 0.25 9.6021 -108.3 -134.8 -145.1 
3 CH 2 Ph C H 3 H 7.7 8.1135 -106.3 -131.1 -140.4 
4 C H 2 C H 2 C H 2 P h H OH 0.19 9.7212 -113.0 -139.2 -143.6 
5 CH 2 -4-CF 3 Ph H H 0.26 9.5850 -114.0 -141.3 -149.6 
6 (E)-CH 2CH=CHPh H H 0.23 9.6383 -113.4 -138.3 -147.1 
7 C H 2 C 6 F 5 H H 0.6 9.2218 -115.3 -139.1 -149.4 
8 CH 2 -4-CH 3 Ph H H 0.29 9.5376 -109.1 -135.4 -146.5 
9 CH 2 -4-NH 2 Ph H H 0.31 9.5086 -110.4 -137.1 -146.1 
10 CH 2 -4 -N0 2 Ph H H 0.27 9.5686 -118.4 -147.7 -151.4 
11 H H H 2934 5.5325 -98.6 -125.0 -129.2 
12 CH 2-4-OHPh H H 0.16 9.7959 -110.7 -136.6 -149.7 
13 C H 2 C H = C H 2 H H 27.5 7.5607 -102.9 -131.5 -137.8 
14 CH 2-4-IPh H H 0.72 9.1427 -113.4 -140.4 -148.4 
15 CH 2 C(0)Ph H H 5.42 8.2660 -114.2 -141.3 -150.3 
16 CH 2-4-pyridyl H H 0.53 9.2757 -111.6 -134.4 -144.9 
17 CH 2 SPh H H 0.25 9.6021 -112.3 -138.9 -146.0 
18 CH2-4-t-butylPh H H 0.17 9.7696 -113.3 -137.0 -150.9 
apIC 5o = -log(IC5o) 
^Intermolecular energy (kcal/mol) calculated in the native HIV-1 protease active site. 
cIntermolecular energy (kcal/mol) calculated in the acetylpepstatin inhibited HIV-1 
protease active site. 
^Intermolecular energy (kcal/mol) calculated in the L-689,502 inhibited active site. 

We then looked for a correlation between the calculated intermolecular 
component of the energy (Einter) and the observed IC50 (15), assuming that Ei n t e r 
might be proportional to the enthalpy of binding (AHbind) and that the entropy of 
binding (ASbind) might be small or constant, thus giving us something which might be 
proportional to the free energy of binding (AGbind)* the value we were actually 
interested in. 

AGbind = AHbind - TASbind 
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Table II. Experimental IC50 Values and Calculated Enzyme^Inhibitor Intermolecular 
Energies for the Ρ 2 ' Training Set of HIV-1 Protease Inhibitors. 

"Ν® 5 ICS? pIC50a EAcPepC E 5 0 2 d 

nM 
19 

20 

21 

22 

23 

HN/( 

OH 

6 
HN„ 

HN^ OH 

OH 

114 6.9431 

9.53 8.0209 

34.25 7.4653 

690 6.1612 

161 6.7932 

-94.3 

-98.2 

-97.4 

-122.3 -131.5 

-128.1 -132.9 

-124.7 -135.5 

-103.1 -135.0 -134.1 

-96.6 -127.7 -130.8 

24 

25 

26 

27 

Ο P H 3 

HN,. 

OH 

*8 
HN. 

OH 

ό 
OH 

Η Ν Λ / Λ 

66.3 7.1785 

212.42 6.6728 

121.8 6.9144 

0.7 9.1549 

-106.1 -134.6 -139.3 

-91.7 -133.6 -144.0 

-99.2 -130.6 -134.2 

-109.9 -135.6 -146.7 

28 

29 

OH 
H N A ^ 

6 ° 
OH 

0.18 9.7447 

40.5 7.3925 

-109.2 -136.4 -145.5 

-94.5 -135.5 -134.5 
HN. 

Continued on next page 
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No R IC50 
nM 

pIC 50 a E N at b EAcPepC E 502 d 

30 30000 4.5229 -88.4 -120.1 -124.1 

31 HNOD 130 6.8861 -94.4 -122.3 -129.8 

32 HN^CH 3 
146 6.8356 -96.5 -123.2 -134.1 

ό 
33 OH 0.1 10.000 -111.7 -139.3 -149.1 

HNA>v 4OH 

34 
Ο 

H N ^ 0 H 

38.6 7.4134 -108.1 -133.2 -138.4 

ô 
apIC50 = -log(IC 5o) 
^Intermolecular energy (kcal/mol) calculated in the native HIV-1 protease active site. 
cIntermolecular energy (kcal/mol) calculated in the acetylpepstatin inhibited HIV-1 
protease active site. 
^Intermolecular energy (kcal/mol) calculated in the L-689,502 inhibited active site. 

Tables I and II give the Ej nt e r values for the compounds in the test dataset as 
minimized in three different enzyme active sites, the native enzyme (Nat), the 
acetylpepstatin inhibited enzyme (AcPep) (76), and the L-689,502 inhibited enzyme 
(502) (77). We observed a very good correlation between Ejnter and pICso, Le. 
-log(IC5o), for all three as shown in Figure 4. Surprisingly, a good correlation was 
observed even with the native enzyme active site where the flaps are open, rather than 
interacting with the inhibitor, as illustrated in Figure 1. 

Both the R 2 and the cross-validated R 2 values are listed below for each 
correlation. In all three cases these are very comparable, indicating that no one 
datapoint is overly influential to the correlation; thus, the correlation should be 
predictive. 

Native: 
p I C 5 0 = -0.15435(Einter) - 8.069 (1) 
R=0.8524, R2=0.7265, crossvalidated R^O.6910 

Acetylpepstatin inhibited: 
pIC 50 = -0.17302(Einter) - 14.901 (2) 
R=0.7623, R^O.5811, crossvalidated R^O.5244 

L-689,502 inhibited: 
p I C 5 0 = -0.16946(Einter) - 15.707 
R=0.8852, R2=0.7835, crossvalidated R2=0.7551 

(3) 
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Figure 4. Plot of calculated enzyme»inhibitor intermolecular energy vs. 
experimental enzyme inhibition (pICso) for the training set of inhibitors, 1, 
3-34 (circles = native enzyme active site, squares = acetylpepstatin inhibited 
enzyme active site, diamonds = L-689,502 inhibited enzyme active site). 

2 4 6 8 10 

Predicted pIC 
12 14 

50 

Figure 5. Plot of predicted 0IC50 vs. observed pICso values for the 
predicted set of inhibitors. The line is one of unit slope, i.e. predicted PIC50 
= observed pICso-
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In fact, using these correlation equations, we were able to make predictions of 
activity for inhibitors prior to synthesis, i.e. true predictions and not post hoc 
explanations of activity. Because this was done over a period of time some of the 
predictions were made with the earliest correlation equation, that of the native 
enzyme, some with the acetylpepstatin inhibited enzyme, and some with the L -
689,502 inhibited enzyme. The accuracy of these predictions is illustrated in Figure 
5. Here, the line is one of unit slope, not a correlation line. There is only one 
significant outlier which will be discussed in more detail subsequently. It must be 
emphasized that we made many more predictions than are shown in Figure 5. 
Frequently, when our prediction for a compound was unfavorable, it was not 
synthesized; or when a prediction was favorable, the exact compound which was 
modeled was not synthesized, but rather an analog. 

Examples. In order to illustrate the power and the limitations of this simple 
approach, some specific examples of predictions are listed in Table ΙΠ. 

Like many others (77), we hypothesized that a symmetrical inhibitor might bind 
more tightly to the symmetrical active site of the HIV-1 protease. Thus, 35 was 
designed as a symmetrical version of 1. The activity of 35 was predicted using the 
earliest correlation equation and it is the outlier seen in Figure 5. We were concerned 
that our prediction was poor due to differences in binding between our model and 
experiment. However, when the X-ray structure was solved (78), this was obviously 
not the case, as shown in Figure 6. There are several other possible explanations for 
the overprediction of activity: (1) the use of the native enzyme model in Equation 1, 
rather than one of the inhibited enzyme models in Equations 2 or 3; (2) the presence 
of an additional hydrogen bond to the active site which would be overemphasized in a 
gas-phase molecular mechanics calculation; (3) the addition of significant favorable 
van der Waals interactions via the second aminoindanol moiety at the N-terminus; or 
(4) the existence of a higher barrier to obtaining the bioactive conformation necessary 
for binding. Of the four possibilities, the first may be eliminated since the activity 
predicted using the other two models is also exaggerated. However, factor (4) may 
play a key role, since 35 experienced a large decrease in its intramolecular enthalpy 
when minimized outside of the active site, an indication that the bound conformation 
may be significantly higher in energy than the global minimum. 

Figure 6. A comparison of the modeled and X-ray structures of 35. 
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TABLE ΠΙ. Calculated Enzyme^Inhibitor Intermolecular Energies and Predicted and 
Observed p!C5Q Values for the Predicted Set of HIV-1 Protease Inhibitors. 
No Structure Ei n ter a Corr. Predicted Observed 

kcal/mol Eq.*> pIC 5o c flCso 
12.012 9.1612 

4.9099 5.8965 

8.7383 8.2676 

9.8847 10.2676 

8.3058d 7.2774 

8.6518 8.1163 

Calculated intermolecular energy in the indicated active site. 
^Correlation equation which was used for prediction based upon minimization in the 
corresponding enzyme active site. 
<?IC5o = -log (IC 5 0). 
^The prediction of activity was originally made for a closely related compound; the 
"predicted" activity reported here was calculated at a later date for the compound 
which was actually synthesized. 
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We have illustrated the worst prediction first. However, one can see in Table ΠΙ 
that we were able to accurately predict that the 6-membered lactam ring in 36 would 
fit poorly in the active site although the analogous 5-membered lactam was a 
nanomolar inhibitor (IC50 = 37 nM) (79). In the best case we were able to distinguish 
small differences in activity between two diastereomers, 37 and 38. These latter 
compounds were based on the Roche inhibitor Ro-31-8959, 39, but incorporate a 
novel amino acid residue at P2 in place of asparagine (20). 

39 42, 

The last two examples involve an interesting feature of HIV-1 protease 
complexes with inhibitors. Due to the symmetrical nature of the enzyme, many 
inhibitors are observed to bind in the active site in two directions, both in an N->C 
and a C->N orientation with respect to the flaps, which in their closed Η-bonded form 
introduce the asymmetry which is the direction marker. Comparing models of 39, 
oriented in the N->C and C->N fashions, in the active site led to the design of an 
active "reversed" Roche analog, 40, in which all the binding elements remain the 
same, but the amide bond directionality is reversed. Similarly, comparing models of 
1 and 39, oriented in the N->C and C->N fashions, respectively, as shown in Figure 7, 

Figure 7. A comparison of the model of 1 oriented in an Ν -> C fashion and 
the model of 39 oriented in a C -> Ν fashion. 
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led to the hypothesis that novel hybrid inhibitors such as 41 could be developed 
which incorporated the C-terminal halves of each. As predicted, 41 was an active 
HIV-1 protease inhibitor. It was also the parent structure of the Phase II clinical 
candidate, L-735,524 (42) (27). Figure 8 compares the models of 41 and 42 as 
minimized in the HTV-1 protease active site. 

Figure 8. A comparison of the models of 41 and 42 as bound in the enzyme 
active site. 

Improving the Model. Although we experienced remarkable predictive success 
employing a simple approach, we obviously neglected several key factors in binding, 
e.g. the flexibility of the enzyme active site, the difference in energy between the 
solution and bound conformations of the inhibitor, and the solvation/desolvation of 
the inhibitor and the enzyme. Thus, we hoped to improve the correlation, and thus 
our ability to make accurate predictions, by incorporating some of these effects into 
our computed energies. Table IV lists the results of some of these calculations. 

In order to assess the effect of the flexibility of the enzyme active site, we had to 
employ a different molecular mechanics program and thus a different force field 
because the program OPTIMOL, within which the M M 2 X force field resides, does 
not generally allow for flexibility of the protein context molecule. Thus, we repeated 
the initial calculations with the rigid active site using the C H A R M m force field 
(22,23) prior to performing minimization of the enzyme^inhibitor complex. This 
afforded an interesting comparison of the results derived from two different force 
fields, indicating that the M M 2 X force field is superior to C H A R M m for this specific 
application, i.e. the correlation coefficients for the acetylpepstatin and L-689,502 
inhibited enzymes were 0.4780 (0.7623) and 0.7213 (0.8852) for C H A R M m 
(MM2X), respectively. 

Further C H A R M m calculations were performed to evaluate the importance of 
relaxation of the enzyme active site. Several residues (8, 22-23, 25-32,45-51,76,78-
82, and 87 in each monomer) which line the active site cavity were allowed to 
minimize concurrent with the inhibitor. The resulting correlation coefficient for the 
energies obtained in this manner was 0.6432 for the acetylpepstatin inhibited enzyme, 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 1

6,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
00

3

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



48 C O M P U T E R - A I D E D M O L E C U L A R D E S I G N 

Table IV. Correlation coefficients obtained when employing a variety of computa-
tional approaches. 

Computational Protocol Correlation Coefficient Computational Protocol 
AcetylPepstatin L-689,502 

E i n t e r , M M 2 X 0.7623 0.8852 

Einter, C H A R M m 0.4780 0.7213 

Ejnter, M M 2 X charges, C H A R M m 0.8262 

Einter, flexible enzyme, C H A R M m 0.6432 

Einter - Inh f l ex (ε = 1), M M 2 X 0.7679 

Einter - Inhflex (ε = 50), M M 2 X 0.7656 

Solvjnh, BMIN 0.2814 

Solvtotal, B M I N 0.3439 

Einter (MM2X) & Solv i nh (BMIN) 0.8863 

Einter (MM2X) & Solv t o tal (BMIN) 0.8880 

Inhibitor Surface Area 0.5504 

Inhibitor Volume 0.5647 

significantly better than that obtained with the rigid enzyme active site using the 
C H A R M m force field. However, this was still slightly worse than that obtained using 
the M M 2 X force field with the rigid active site. 

We postulated that the better correlation obtained with the M M 2 X force field 
might be due to the consistent charging scheme employed. In order to explore this 
hypothesis we performed C H A R M m calculations using the M M 2 X charges. As 
expected, this led to an improvement in the correlation coefficient, from 0.7213 
(CHARMm/CHARMm charges) to 0.8262 (CHARMm/MM2X charges) for the L -
689,502 inhibited enzyme active site. One might naturally speculate that coupling the 
use of M M 2 X charges and allowing the enzyme active site to relax might increase the 
overall correlation enough to be of interest. We plan to repeat these calculations 
employing the Merck Molecular Force Field (MMFF), an improved version of 
M M 2 X , which has been incorporated into the C H A R M m program (23). 

We also attempted to correct for the energetic cost of the inhibitor attaining the 
bound conformation by subtracting from Ejnter the difference in energy between the 
free and bound inhibitor conformations. The energy of the uncomplexed inhibitor 
was assessed at two different dielectric constants, 1 and 50. Although each improved 
the correlation slightly (R = 0.7679 and 0.7656 for ε = 1 and ε = 50, respectively, 
versus 0.7623 for the acetylpepstatin inhibited enzyme), neither showed a significant 
enough effect to justify the inclusion of another term. 

Incorporation of solvation effects via the B A T C H M I N (24) GB/SA continuum 
solvation method (25) using the M M 2 force field also was ineffective at improving 
the correlation more than marginally, independent of whether the solvation of the 
inhibitor only (R = 0.8863) or the total solvation of binding (R = 0.8880) was 
considered. This was consistent with a low correlation between the computed 
solvation energy and the observed activity (R = 0.2814 and 0.3439 for the inhibitor 
and total solvation, respectively). Although this was disappointing, it may simply 
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indicate that we have not properly approached the computation of solvation energy 
for these inhibitors. 

Thus, unfortunately we have yet to improve significantly upon our initial simple 
predictor of activity, Ejnter, despite the fact that other energetic factors are clearly key 
contributors to binding affinity. 

Conclusions 

In summary, we have illustrated that the qualitative approach to modeling of HIV-1 
protease inhibitors was successful in facilitating the design of the first safety 
assessment candidate in this program, 2. However, the semi-quantitative approach to 
modeling of HIV-1 protease inhibitors, via the derivation of a correlation between 
Einter and IC50, was successful in predicting the activity of a variety of proposed 
inhibitors prior to synthesis. This facilitated the design of the current Phase Π clinical 
candidate, L-735,524 (42). 
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Chapter 4 

From Maps to Models 
A Concerted Computational Approach to Analysis 

of the Structure-Activity Relationships of Amiloride 
Analogues 

Carol A Venanzi1, Ronald A Buono1, William J. Skawinski1, 
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In order to interpret structure-activity data on the binding of amiloride 
analogues to the sodium channel in the frog skin, work in this 
laboratory has been directed towards a concerted computational study 
of amiloride and its analogues using quantum mechanics, molecular 
dynamics, static solvation model studies, and innovative model-
building with stereolithography. Based on molecular electrostatic 
potentials of analogues with pyrazine ring modifications, a 
pharmacophore has been identified for analogues which form a stable 
blocking complex with the channel. The validity of this pharmacophore 
was tested and found to hold for two analogues with sidechain 
elongations. Quantum mechanical conformational analysis and 
molecular dynamics and static solvation studies of amiloride were 
carried out to determine the degree of planarity of amiloride as well as 
the relative energy of various conformera in solution. The A l free base 
conformer (OCCN=180°) was found to be more stable than the A4 
(OCCN=0°) in solution. This sheds light on earlier NMR studies which 
were unable to distinguish between the two conformera in solution. 
The protonated species of amiloride was found on the average to be 
planar in solution. This has important implications for its mode of 
binding to proteins and nucleic acids. 

[Current address: Tripos Associates, Inc., St. Louis, M O 63144 
'Current address: Institute of Chemical Physics, Chernogolovka, Moscow Region, 
Russia 142432 

0097-6156/95Α)589-0051$12.00/0 
© 1995 American Chemical Society 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
00

4

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



52 C O M P U T E R - A I D E D M O L E C U L A R D E S I G N 

Introduction: Structure-Activity Studies of Amiloride Analogues. 

Amiloride, 1, a novel acylguanidinium diuretic, has been shown to be a potent 
inhibitor of sodium transport in a variety of cellular and epithelial transport systems 
(1-4). In particular, amiloride has been used to probe the mechanism of taste 
transduction in lingual epithelia (5-19). Since the molecular structure of the epithelial 
sodium channel is not known, information on the amiloride binding site on the ion 
channel protein must be intuited from structure-activity studies of amiloride analogues. 
For example, Cuthbert has pointed out the importance of the guanidinium group for 
blocking epithelial sodium channels (20). L i et al. (21,22) have used noise analysis of 
the stationary sodium current transversing frog skin to study the efficacy of amiloride 
analogues with pyrazine ring modifications and/or guanidinium sidechain 
modifications to block sodium transport. Some of their data is summarized in Table I. 
The numbers in parentheses are the pKa-corrected values which are based on only the 

concentration of the protonated species. The data correlate changes in the substituent 
at the 5- or 6-position of the pyrazine ring or changes in the sidechain to differences in 
the microscopic association constant, kon> and the dissociation constant, koff. The 
table shows that substitution of other halogens or hydrogen for chlorine has little effect 
on k o n , but a considerable effect on k0ff. A relatively low value for koff, and a 
consequently long block time, indicates that the analogue interacts with the channel 
binding site for a relatively long time, forming a stable complex with the channel that 
prevents sodium transport through the channel (i.e. a blocking complex). Analogue 5, 
with a hydrogen at position 6, forms the least stable blocking complex with the 
channel protein. Substitution at position 5 with either a hydrogen (analogue 6) or 
chlorine, 7, affects both k o n and koff, with 7 forming the poorer blocking complex with 
the channel. Of the two molecules with elongated sidechains, analogue 18 has a pK a -
corrected kon similar to amiloride, while that of 19 is much smaller. This suggests 
(22) that they have a different type of initial molecular interaction with the channel. 
The koff values indicate that 19 is a slightly better blocker than amiloride, while 18 is 
worse. L i , et al. (21,22), building on the plug-type model of Cuthbert (23), have 
suggested a two-step model for the analogue-channel interaction: (1) The guanidinium 
sidechain invades the channel entrance and interacts with an anionic site to form an 
encounter complex; (2) Then, either no block occurs and the molecule is released, or 
the substituent at the 6-position of the pyrazine ring binds to an electropositive site on 
the channel, forming a stable blocking complex. 

Molecular Electrostatic Potential (MEP) Maps. In order to interpret this data at the 
molecular level, we have initiated a step-wise computational approach to the problem 
(24-26). For analogues 1-7 in Table I, we carried out the following procedure using ab 
initio quantum mechanics: (1) geometry optimization of the free base and protonated 
conformera of amiloride in order to determine which conformer in each species was 
the most stable and should, therefore, be used for the subsequent MEP study. This 
data also provided the basic structural template for the other pyrazine ring analogues; 
(2) calculation of the molecular electrostatic potential maps of the A l free base form 
(OCCN=180°) of 1 in order to determine the site of protonation (the other pyrazine 
ring analogues were assumed to be protonated in the same position); (3) calculation of 
the molecular electrostatic potential maps of the protonated forms of 1-7 in order to 
determine features important to the formation of the encounter complex; (4) 
construction of a model encounter complex (formate anion in a chelate-type 
orientation with the guanidinium group of the analogue) and calculation of the 
molecular electrostatic potential maps of this complex in order to determine the steric 
and electrostatic features of the analogues (i.e. the pharmacophore) important to the 
formation of a stable blocking complex with the ion channel. Details of the 
calculations are given in the original papers (24,25). An overview of the work, the 
assumptions implicit in this approach, and the computational methods employed is 
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Table I. Structure-Activity Data for Binding to Sodium Channel in Frog Skin 

Analogue Substitution at kona koff* Block timec 

Position 
5 6 

1 -NH 2 -CI 13.17±0.25 3.93±0.19 255 
2 -NH 2 -Br 14.19±1.09 5.58±0.92 179 
3 -NH 2 -I 11.43±0.90 17.41±0.40 57 
4 -NH 2 -F 13.54±0.65 32.2Q±1.57 31 
5 -NH 2 -H 14.47±0.68 176.25±17.73 6 
6 -H -CI 3.32±0.44 10.89±1.35 92 

(3.42) 
7 -CI -CI 5.16±0.46 151.10±16.48 7 

Analogue Elongation with kona k0ff* Block timec 

18 -0 1.22±0.07 20.67±3.72 48 
(13.4) 

19 -NH- 2.16±0.11 3.41±Q.55 293 

SOURCE: adapted from refs. 21 and 22. 
aIn units s^uM-1. 
*In units s_1. 
cIn units ms. 
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given in a recent review (26). For completeness, the assumptions are summarized 
here: 

(1) The receptor provides a binding site which is complementary in both 
molecular shape and molecular electrostatic potential to that of the analogue. 

(2) The most potent analogue provides the steric and electrostatic template for 
the pharmacophore. 

(3) Electrostatic forces are dominant in directing the analogue into the receptor 
site. 

(4) Low energy conformera of the analogue, not just the global energy 
minimum conformation calculated in the gas phase, should be considered as templates 
for the pharmacophore. 
Although this approach has some features in common with the Active Analogue 
Approach of Maisha\\(27-30), it is, in contrast, not a traditional QSAR analysis. 

Analysis of the MEP maps of the protonated species indicated that those 
analogues that have kon values similar to amiloride have strong, distinguishing minima 
in the M E P pattern off the carbonyl oxygen, off N4, and off the amino groups at 
positions 3 and 5 of the pyrazine ring. Analogues which have k o n values which differ 
from amiloride lack two or more of these features and exhibit a much more positive 
pattern over the pyrazine ring. This can be seen, for example, by comparison of the 
MEP maps of protonated amiloride, 1 (Figure la), 5 (Figure lb), and 6 (Figure lc). 

Analysis of the MEP maps of the model encounter complexes indicated that: 
(1) A stable blocking complex is formed with analogues that have a deep, 

localized minimum off the 6-position of the pyrazine ring; 
(2) The stability of the blocking complex is directly related to the depth of the 

minimum; 
(3) Substitution at position 5 affects not only the depth but also the location 

and size of the minimum off position 6; 
(4) Steric factors may influence the optimal binding of the 6-position ligand to 

the ion channel. 
Points (l)-(3) can be seen, for example, by comparison of the MEP maps of the model 
encounter complexes of 1 (Figure 2a), 5 (Figure 2b), and 6 (Figure 2c). Point (4) can 
be seen by comparison of the MEP maps of the encounter complexes of 2 (Figure 2d) 
and 3 (Figure 2e). The latter two maps are very similar and yet the values of koff (and 
the block time) are different. Since iodine has a much larger van der Waals radius 
than bromine, this suggests that steric factors may also influence the binding to the ion 
channel. 

Although L i and coworkers identified the guanidinium group and the 
substituent at the 6-position of the pyrazine ring as being implicated in binding, the 
unique feature of our work is that it provides additional information at the molecular 
level by relating the stability of the blocking complex to the size, depth, and location 
of the minimum in the molecular electrostatic potential off the 6-position. Taking 
amiloride as the template for a molecule which forms a stable blocking complex with 
the channel, it seems that the positions of the proton donors H20 and H23, along with 
the position of the minimum off chlorine, may identify the relative spatial location of 
complementary sites on the channel. The above features can be incorporated into a 
pharmacophore to identify a molecule that could form a stable blocking complex with 
the sodium channel. 

The Pharmacophore Hypothesis. There are several features to the amiloride 
pharmacophore: 

(1) Strong, distinguishing minima in the MEP map off the carbonyl oxygen, 
and off positions 3,4, and 5 of the pyrazine ring; 

(2) A broad, positive MEP maximum localized over the sidechain; 
(3) A deep, localized MEP minimum off the 6-position of the pyrazine ring; 
(4) A fixed distance between the proton donors of the chelating guanidinium 

group and the minimum off position 6 of the pyrazine ring. 
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Figure 1. Molecular electrostatic potential maps of protonated analogues. 3-21G* 
basis set. Contours in units of kcal/mol. a. 1. b. 5. c. 6. (Reproduced with 
permission from ref. (25). Copyright 1992 American Chemical Society.) 
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56 COMPUTER-AIDED MOLECULAR DESIGN 

Figure 2. Molecular electrostatic potential maps of encounter complexes. STO-3G 
basis set. Contours in units of kcal/mol. a. 1. b. 5. c. 6. d. 2. e. 3. (Reproduced 
with permission from ref. (25). Copyright 1992 American Chemical Society.) 
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Perhaps the most interesting question is: how can analogues 18 and 19, which 
have elongated sidechains, fulfill condition (4) of the pharmacophore? If 18 and 19 are 
assumed to be planar, overlap of the guanidinium group of either 18 or 19 with that of 
amiloride shows that the chlorine atoms of 18 and 19 are located in a very different 
region of space than that of amiloride. Similarly, if the chlorines are overlapped, the 
chelating hydrogens of 18 and 19 are offset from those of amiloride. This seems to 
indicate that it might be difficult for 18 and 19 to orient in such a fashion as to 
simultaneously bind to the anionic site as well as to the electropositive site on the 
channel off chlorine. Our latest studies in this direction are described in the section on 
Testing the Pharmacophore Hypothesis. But first, solvation studies of amiloride were 
carried out in order to determine whether the pharmacophore hypothesis needed to be 
refined by consideration of the solvent effect on the structure and relative energy of the 
amiloride conformers. 

Refinement of the Pharmacophore Hypothesis. 

The amiloride pharmacophore was developed on the basis of gas phase conformational 
analysis and molecular electrostatic potential maps. The results of the conformational 
analysis using the 3-21G* basis set showed that, for both the free base and protonated 
species, the global energy minimum conformations ( A l and F l , respectively, each 
with OCCN=180°) were planar with hydrogen bonding between Os—Hio and O8..H22 
(24). For the free base species, A l was shown to be 2.50 kcal/mol more stable than A4 
(OCCN=0°) with a barrier to rotation around the - C 2 - C 7 - bond of 19 kcal/mol (24). 
The assumption was made that it was unlikely that substitution at the 5- or 6-position 
of the pyrazine ring would significantly affect the height of the barrier or the relative 
energy of the A1-like and A4-like conformers and, therefore, that the free base forms 
of the analogues would probably be more stable in the A1-like than the A4-like 
conformer. Since Dreiding models showed steric repulsion between the pyrazine ring 
amino hydrogen, H 1 0 , and the sidechain proton, H24, in the F4 conformer (OCCN=0°), 
all the protonated analogues were assumed to bind in an F1-like conformation. The 
molecular electrostatic potential analysis was carried out on the analogues in the planar 
A1-like and F1-like conformers and the resulting maps seemed useful in interpreting 
the structure-activity data. However, two questions arose which needed to be 
answered in order to decide whether the pharmacophore should be refined: 

(1) Could solvent disrupt the intramolecular hydrogen bonding pattern noted 
in these conformers, thereby stabilizing nonplanar conformers which might be 
involved in binding to the channel? Since the analogue-channel interaction itself 
cannot be modeled due to lack of data on the molecular structure of the channel 
protein, the water-analogue interaction may serve as an indicator of the degree to 
which nonplanar conformers of the analogue can be stabilized by interaction with the 
surrounding environment. 

(2) Could solvent affect the relative ordering of the energies calculated in the 
gas phase? In particular, would solvent stabilization result in A4, the conformer with 
the larger dipole moment, being more stable than A l ? The NMR studies of Smith et al. 
(31) were unable to distinguish between these two conformers in solution. 

In order to investigate these questions, we carried out molecular dynamics and 
static solvation studies of the free base and protonated conformers of amiloride. The 
details of the calculations are given in a recent publication (32) and are summarized in 
another ACS Symposium volume (33). Only the most relevant points will be given 
below. 

Torsional Studies. As with the free base conformers, gas phase 3-21G* 
conformational analysis was carried out on protonated amiloride, 1, in order to 
determine the barrier to rotation around the - C 2 - C 7 - bond and to provide data for 
parameterization of the relevant torsional potential function in the GROMOS (34) 
molecular dynamics package. The study showed that the energy of the protonated 
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species rises slowly from 0 to 4 kcal/mol as the OCCN torsional angle changes from 
180° to 160°. Beyond this region, the energy increases steeply and monotonically, 
reaching a maximum of 33 kcal/mol at the F4 (OCCN=0°) conformer due to steric 
repulsion between H 1 0 and H 24. This indicates that, although F l (shown as structure 
1) is the conformer of lowest energy, there are other nonplanar conformers within ±20° 
of F l which may be accessed with little expenditure of energy and could be 
significandy stabilized by interaction with solvent. 
Solvation Studies. Molecular dynamics simulations and static solvation studies were 
carried out on the free base and protonated conformers of amiloride. The static 
solvation models included the Lange vin Dipole (LD) technique (35-38), which treats 
water in an inner region as polarizable point dipoles and as a continuum in an outer 
region, as well as the Induced Polarization Charge Boundary Element (IPCBE) 
Method (39-43) and the Self-Consistent Reaction Field (SCRF) Method (44-50), both 
of which treat water as a continuum. Although all the techniques allow for geometry 
optimization of the solute in the presence of the solvent, in order to avoid problems 
with differences in the basis sets or force fields, the L D , IPCBE, and SCRF methods 
were applied to the fixed, 3-21G*-optimized gas phase geometries. 

Molecular Dynamics Simulations. Molecular dynamics simulations of 30 ps 
in length were carried out for the A l , A4, and F l conformers. Comparison of the 
internal energy for A l and A4 shows that A l is more stable than A4 by 3.4 kcal/mol, 
in agreement with the gas phase results of 2.5 kcal/mol. On the other hand, the A4-
water interaction energy term is 1.4 kcal/mol more stable than the Al-water interaction 
term. However, summation of these two terms predicts A1 to be more stable in 
solution than A4 by 2.0 kcal/mol. Analysis of the O C C N torsional angle for the A l , 
A4, and F l trajectories shows that it tends to vary by less than ±10° from planarity in 
each case. So the molecular dynamics results support the use of the planar Al- l ike and 
Fl-like conformers for calculation of the electrostatic potential maps and indicate that 
no refinement of the pharmacophore is required from the standpoint of solvent 
stabilization of nonplanar conformers. 

Static Solvation Models. The results of the three static solvation models 
support the findings of the M D simulations that A l is more stable in water than A4. 
The L D and IPCBE methods were used to study all the conformers from the torsional 
barrier study for both the free base and protonated species. For both techniques, three 
sets of atomic point charges were used: 3-21G* charges adjusted to the GROMOS 
charge group concept (34), 3-21G* Mulliken charges, and 3-21G* potential-derived 
charges. The electrostatic contribution to the hydration free energy was calculated to 
be very similar in both techniques for each conformer. When the gas phase relative 
energy difference was added to the difference in hydration free energy for A l and A4, 
both methods predicted the A l conformer to be more stable than A4 by about 0.4-1.8 
kcal/mol, depending on the atomic charge set. (The only exception was the L D 
method with the 3-21G* Mulliken charge set which predicted A4 to be more stable by 
0.1 kcal/mol.) In a separate calculation using the A M I Hamiltonian incorporated into 
the L D method, the results showed A l to be more stable than A4 by 2.1 kcal/mol. The 
SCRF method, using the 3-21G* basis set, also predicted the A l conformer to be more 
stable than A4 by 1.1 kcal/mol. In the absence of definitive experimental data, the 
agreement of four disparate solvent models, ranging from discrete water molecules to 
a continuum, seems to indicate that solvent has little effect on the planarity and 
relative energy ordering of the conformers and that the assumptions of the gas phase 
study are valid. 
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Testing the Pharmacophore Hypothesis on Amiloride Analogues with Sidechain 
Elongations. 

As the high barrier for rotation around the primary torsional angle involving the - C 2 -
C7- bond in both the free base and protonated species of amiloride shows, there is 
considerable conjugation between the pyrazine ring and acylguanidinium sidechain. 
In analogues 18 and 19, the insertion of -O- or -NH- , respectively, between the 
carbonyl and guanidinium groups may affect the degree of conjugation and allow the 
molecules to adopt conformations in which the guanidinium group is nonplanar with 
respect to the pyrazine ring. Since it is clear that planar 18 and 19 cannot fit the 
amiloride pharmacophore, investigation of alternative conformers may provide an 
indication of why 19 in particular forms a more stable blocking complex with the 
channel than amiloride. 

Conformational Analysis. The 3-21G* and 6-31G* basis sets were used with 
the GAUSSIAN92 (57J program to study rotation around the secondary torsional 
angle involving the -C7-X16- bond and the tertiary torsional angle involving the -X16-
N17- bond, where X=0 for 18 and X=N for 19 (Skawinski, W.J. and Venanzi, C.A., 
manuscript in preparation). Although a thorough analysis of the conformational 
potential energy surface has not yet been completed, preliminary results seem to 
indicate that, for the 6-31G* basis set, the global energy minimum for 18 occurs at 

Ni7-Oi6-C7-0 8 = 3.50 

Ci8-N 1 7 -Oi6-C 7 = 142.9° 
H 2 5 -Ni7-Oi 6 -C 7 = -5.2o 

and for 19 at 
N i 7 - N 1 6 - C 7 - 0 8 = -I7.30 
Ci8-Ni7-N 1 6 -C 7 = 95.30 
H 2 5 -Ni7-N 1 6 -C 7 =-52.3°. 

Figure 3 shows that the global energy minimum conformers of both 18 and 19 are 
nonplanar structures, with 19 being significantly more out-of-plane. Superposition of 
18 or 19 onto amiloride by fitting the chlorine atom and the chelating hydrogens (H 2 i 
and H 2 4 of 18 and 19) to the chlorine atom and H 23 and H 2 oof amiloride shows that 
the bent, nonplanar structures of 18 and 19 can indeed fulfill the spatial requirements 
of condition (4) of the pharmacophore, although as a result, neither the guanidinium 
groups nor the pyrazine rings of the fitted partners are coplanar. 

Molecular Electrostatic Potential Maps. In order to investigate whether 18 
and 19 could reproduce the other features of the pharmacophore, particularly condition 
(3), molecular electrostatic potential maps of the analogue-formate anion complex 
were calculated in the STO-3G basis set using the SPARTAN 3.0 program (52) and 
compared to the STO-3G maps calculated for the pyrazine ring analogues (25). The 
results showed a similarity in all the features of the maps of 18,19, and amiloride, 
especially in the location of a deep, localized MEP minimum off the 6-position of the 
pyrazine ring (Skawinski, W.J., Busanic, T., and Venanzi, C.A. , manuscript in 
preparation). This begins to explain why 19, in particular, is as good a blocker as 
amiloride. But further study of the maps and the molecular structures is needed in 
order to interpret the difference in the blocking capabilities of 18 and 19. 

New Directions in Modeling: Stereolithography. 

Since the molecular structure of the amiloride binding site on the channel protein is 
not known, one way to intuit information about the site is to assume that it is 
complementary in molecular shape and molecular electrostatic potential pattern to that 
of the most potent analogue(s). Amiloride and 19 form the most stable blocking 
complexes with the channel and we have shown above how 19 can fit important 
features of the amiloride pharmacophore. However, 19 is nonplanar whereas 
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Figure 3. Gas phase global energy minimum conformers, 6-31G* basis set. a. 18. 
b. 19. 

amiloride is planar. What may this tell us about the binding site? Is it an open cavity 
where all that really matters is that a potent analogue be able to fit the spatial 
requirements of the three-point binding involving the chelating hydrogens and the 
chlorine? Since amiloride appears to bind in a planar orientation to DNA (53), binding 
in a sequence-selective fashion to sites rich in adenine and thymine residues, does this 
give us some clues about the nature of amiloride binding to the ion channel? Is it 
important that the guanidinium group and or the pyrazine ring form some type of 
stacking complex with the amino acid residues of the channel protein? On the other 
hand, it is known from analysis of protein crystal structures (54-58) that, although the 
chelate-type orientation between the carboxylate moiety of Asp and the guanidinium 
group of Arg is the most common type of molecular interaction between the two 
functional groups, other orientations are possible. Perhaps 19 interacts with the 
anionic site on the channel using a pair of hydrogens other than H 2 1 and H 2 4 ? 

In order to investigate these issues further, in the absence of explicit knowledge 
of the molecular structure of the ion channel, we are using the technique of 
stereolithography (59) to build plastic models of the global energy minimum 
conformers of amiloride analogues and of their complementary molecular shapes. We 
have also applied the technique to other molecules of biological interest, such as 
cyclodextrins and novel amino acid analogues (60,61). The first step in the 
stereolithography procedure is to process the molecular coordinates so that the solid 
volume is "sliced" into a series of thin layers. This information is passed on to the 
stereolithography apparatus, which consists of a cube-shaped vessel filled with a liquid 
polymer. Within this vessel is a movable platform whose height is computer-
controlled. At the start of the process, the platform is at a maximum height within the 
vessel so that a thin layer of liquid polymer lies above its surface. This liquid polymer 
is cured by interaction with ultraviolet light to form a solid material. A computer-
controlled ultraviolet laser draws the image of the first slice of the model onto the thin 
liquid film, producing a solid model of the slice. Then the platform moves down one 
step, resulting in a thin layer of liquid being positioned above the first slice produced. 
The laser then draws the next layer of the model which becomes bonded to the first 
and the process is repeated until the entire model has been fabricated layer-by-layer. 
The model is partially cured in the apparatus and then moved to an ultraviolet oven for 
final curing. The advantage of this technique is that it can not only produce a model of 
a calculated molecular structure, but it can also produce a model of the shape that is 
complementary to that molecular structure, i.e. the "footprint" left behind by the 
molecular shape in the plastic. For example, Figure 4 shows how the model of 19 in 
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Figure 4. Stereolithography model of the 6-31G* gas phase global energy 
minimum conformer of 19 in the amiloride complementary shape. (Photo credit: 
BillWittkop.) 

its nonplanar, gas phase global energy minimum conformation can fit into the 
amiloride complementary shape with its chelating hydrogens and chlorine atom 
aligned at the locations where those of amiloride would be found. Although the 
pyrazine ring of 19 is clearly not coplanar with the complementary shape of the 
amiloride pyrazine ring, the models show that 19 can fit the steric requirements of the 
amiloride pharmacophore. The rigid plastic model of the amiloride complementary 
molecular shape does not take into account the dynamical motion of a protein binding 
site and is not meant to be a realistic model of the receptor site. However, it gives a 
first approximation to the spatial requirements that define the amiloride 
pharmacophore and, in combination with the MEP and superposition studies described 
above, leads to some understanding of how 19, which has a global energy minimum 
conformer so different from that of amiloride, could be just as effective as a sodium 
channel blocker. Ultimately the models of the analogues will be encoded with 
information on their molecular electrostatic potentials and will be used to intuit the 
complementary MEP of the site. 

Future Studies of Amiloride Analogues. 

Completion of the conformational analysis of 18 and 19 may reveal that for each 
analogue there is a wide range of torsional angles which define conformers with 
relatively low energy. In that case, it is possible that the analogues may bind in one of 
these conformations, rather than the global energy minimum structure. Therefore, the 
MEP, superposition, and stereolithography analysis described above will be applied to 
these conformers, as well, in order to attempt to determine the difference in the 
efficacy of 18 and 19 as sodium channel blockers. 

L i et al. (21) have studied many other analogues with sidechain elongations. 
We plan to investigate these as well, using the concerted computational approach 
described here, in order to obtain a better understanding at the molecular level of the 
structure-activity relationships of amiloride analogues. 
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Chapter 5 

De Novo Design 
Ligand Construction and Prediction of Affinity 

Tudor I. Oprea, Chris M. W. Ho, and Garland R. Marshall 

Center for Molecular Design, Washington University, Lopata 510, 
One Brookings Drive, St. Louis, MO 63130 

The availability of a therapeutic target of known three-dimensional 
structure challenges the computational chemist to design and predict the 
affinity of novel ligands. A set of computational tools (CAVITY, 
FOUNDATION, SPLICE, DBMAKER, FLOOD) have been developed 
to discover sets of molecular fragments which optimize binding in 
subdomains of the active site. These are then spliced together 
combinatorially and optimized in size to fit within the active site cavity. A 
crucial aspect is the method of predicting the affinity so that compounds 
can be prioritized for retrosynthetic analysis and synthesis. We have used 
CoMFA, a 3D QSAR paradigm, to develop a predictive model for HIV 
protease. The robustness of this model was confirmed by a different 3D-
QSAR method (HASL), and has good predictive and explanatory power. 
Novel ligands for HIV protease have been designed subject to chemical 
constraints which minimize their synthetic difficulty. Their relative 
affinities have been predicted using the CoMFA model and the series is 
undergoing synthesis and binding assays. 

Receptors are macromolecules specialized in recognizing a specific molecular pattern 
from the large number of molecular species with which it could interact. 
Pharmacological receptors are generally transmembrane molecules that can be activated 
by specific signal molecules (e.g., agonists); a process followed by a specific 
biochemical or biological response from the cell (organ) associated with the receptor. 
Enzymatic binding sites have substrate (ligand) specificity, and biochemical reactions 
are triggered upon substrate binding. In immunology, antibodies can be considered as 
receptors that specifically bind antigens - and immunoglobulins activate cellular 
responses in the presence of antigens (e.g., mast cell degranulation). Therapeutic 
manipulation of these macromolecular targets (collectively termed receptors) using 
specific ligands (drugs) is the objective of the pharmaceutical industry. Efforts aim at 
orally-available, potent, stereospecific drugs, that should act as agonists, antagonists or 
modulators on the desired molecular (and cellular) target. With the advent of powerful 
computers, an increasing majority of these ligands are sought using a rational approach, 
computer-aided drug design. 
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The development of software for computer-aided drug design has focused on several 
aspects: 
• molecular modeling - the ability to produce accurate models for small molecules in 
vacuo or in solvent (based on quantum mechanical or empirical methods), using 
geometry optimization, conformational analysis, molecular dynamics and related tools; 
• tertiary structure prediction - the ability to successfully predict and/or calculate 
macromolecular structures (largely based on increasingly available X-ray and N M R 
determinations); 
• molecular graphics methods - the representation of molecular properties using various 
techniques, so that essential information is visualized on the screen; 
• docking and prediction of affinity - the identification of the binding site(s) and the 
computation of intermolecular interactions, with the use of molecular recognition and 
docking techniques; such methods may use flexible or rigid docking, free-energy 
perturbation methods, or structure-activity relationship models to predict the binding 
affinity; 
• chemical databases - storage and manipulation of chemical information, with the use of 
advanced computational methods (e.g., clustering packages for multiple conformer and 
similarity searches); chemical database searches can suggest new lead compounds and 
may help evaluate synthetic feasibility; the spinoff of chemical database searching is a 
method known as de novo ligand design (when new molecular structures are software-
generated, then evaluated by computer methods for binding affinity and by medicinal 
chemists for synthetic feasibility). Such methods are collectively termed rational design 
programs (RDPs). 

The use of computers in drug design needs to be an economically viable solution 
in the face of other methods of drug discovery, such as screening and serendipity. 
Direct drug design techniques start from the known 3D-structure of the target 
macromolecule, in most cases co-crystallized with a lead compound. Efforts are then 
directed towards improving the binding affinity of the ligand. In most cases, novel 
structures are required to ensure patent protection. Indirect drug design techniques start 
from experimental (e.g., biophysical, pharmacological) evidence for the studied 
macromolecular target of unknown 3D structure, and mainly utilize biological data for 
series of ligands, searching for common patterns in the structural and property space (in 
order to define the pharmacophore). Both methods are aimed at obtaining more potent 
ligands by differentiating features that increase binding affinity from those that 
contribute to agonism, partial agonism and/or antagonism, and to outline key features 
for receptor (stereo)selectivity. When such features are manipulated by synthetic efforts, 
then tested on the desired target, a crucial step in selecting candidates for synthesis is the 
(accurate) estimate of binding affinity. 

The majority of ligands bind to receptors in a reversible, non-covalent manner. 
With the increasing availability of 3D structures for macromolecules of therapeutic 
interest, direct molecular modeling techniques have become more important. Ligand 
specificity is obtained by matching the molecular architecture of the receptor binding site 
(Fischer's lock and key theory). The 3D structure of the ligand in the receptor binding 
site reveals the orientation of key functional groups (pharmacophore) that a ligand must 
present to ensure receptor recognition and selectivity. These pharmacophoric features 
are matched by corresponding receptophore features (key residues of the receptor that 
are essential for agonist and/or antagonist binding). Receptophore elements are, for 
most cases, identified using site-directed mutagenesis. 

The challenge of the medicinal chemist is to develop molecular structures that 
match pharmacophore and receptophore features, while limiting side effects or catabolic 
susceptibility. However, even if pharmacophore and receptophore data are available, 
alterations in the chemical structure that would lead to improved potency are not 
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66 COMPUTER-AIDED MOLECULAR DESIGN 

obvious. In fact, due to competitive proprietary pressures, a requirement for non-
obvious alterations to allow patent protection is implicidy imposed. 

Numerous computer-aided design tools have been developed to aid medicinal 
chemists. Based on the underlying strategy, these RDPs usually belong to one of three 
main categories: 1. Scanners, 2. Builders, or 3. Hybrids. 

Scanners are database searching programs and represent the majority of the 
RDPs available. A query specifies the 3D pharmacophore pattern for the desired 
ligands, then a chemical database is searched. Recovered compounds should place the 
query elements in the correct orientation. Depending upon the extent of the database, 
novel compounds possessing unique geometry can be recovered, providing insight as 
well as a foundation for further refinement. Numerous three-dimensional database 
search and retrieval systems have been developed(7-72). Notable programs include 
ALADDIN(5), 3DSEARCH(6), MACCS-3D(7), CHEM-X(S), and SYBYL/3DB(9). 
Recent reviews by Martin(7 j,74) and Borman(75) thoroughly discuss this technique 
and its application. 

Builders are RDPs that essentially spawn and evolve ligands from a seed point 
within the receptor cavity. Generated ligands are the result of an iterative process of 
growth, followed by geometry optimization and refinement. These include the 
programs: GROW(76), LEGEND(77), GenStr/GroupBuild(7S), and LEAPFROGS) . 
GROW and LEGEND add randomly-selected atom types or predefined substructures 
(e.g., amino acid residues) to the growing structure at sites which are sterically clear of 
either the receptor or the ligand itself. Upon completion, minimizations are performed to 
relax the structure within the active site. GenStr/GroupBuild and LEAPFROG use pre
selected functional groups and iterative force-field optimizations to ensure a reasonable 
ligand geometry upon completion. 

The third category of RDPs combine techniques from both scanners and 
builders, thus, they utilize a hybrid strategy. There are several advantages to this 
approach. Most receptors have complex geometric and potential energy features(79), 
including numerous receptophore elements, e.g., hydrogen-bonding loci or 
hydrophobic subpockets. In performing a 3D search, probability alone dictates that the 
odds of retrieving an Erhlich's "magic bullet" that matches all pharmacophoric loci are 
extremely small. The odds are further diminished as the majority of database-retrieval 
systems maintain only a single, static conformer per structure. 

Hybrid RDPs partition the active site of the target receptor into receptophoric-
element containing subsites. Chemical fragments (building blocks) complementary to 
each subsite are then designed or retrieved from databases. These fragments are then 
linked to form ligands. The advantage of this approach is that ligand diversity is 
augmented through the combinatorial assembly of numerous sub-components. 
Programs using this approach are LUDI(20,27), BUILDER(22-24), the "linked 
fragment approach" of Verlinde(25), the MCSS method(26), and the use of transferable 
fragment properties(27-29), among others. 

A l l these approaches have inherent strengths and weaknesses. Scanners have 
been popular because they evolved from pre-existing 2D structure searching methods. 
Their advantage is that answers are quickly obtained, providing ideas for compounds 
which might never have been considered as candidates for a specific target. When data 
on synthetic methods associated with similar compounds is included in the database, 
chemists can benefit from previous synthetic work. The disadvantage of scanners is that 
a pre-existing chemical database is required, and that the solution space is biased by the 
contents of that database (e.g., chemical diversity). Pharmaceutical companies have 
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access to in-house databases (and synthetic means); however, these are limited by 
previous work. Commercially available databases are used by smaller companies and 
academic researchers, and can be combined with in-house databases to enhance 
chemical diversity. 

To address the above limitations, the builder strategy was developed. A naive 
builder is influenced only by the active site environment. No chemical database is 
needed, for the benefit of researchers with limited access to such databases. Any class 
of structures could be potentially generated; however, the developer must provide the 
heuristics (e.g., when to perform a specific operation, what atom types to use, where to 
attach the next functional group, etc.), logistics (e.g., attach atom, break bond, modify 
torsion angle, fuse ring, etc.), and a molecular mechanics framework to maintain self 
consistency. Thus, builders are biased by the creativity of the program developer. 
Scanner RDPs suggest structures for which synthetic procedures are known. This is not 
necessarily true for builder programs, although true novelty of the suggested structure is 
more likely. 

Although chemical databases are required for hybrid RDPs, ligand diversity is 
assured through the combinatorial assortment of building blocks. The sampled solution 
space of the database can be user-specified. Active site regions are individually 
complemented, hence, the proposed ligands are more likely to match the entire 
pharmacophore. The principal weakness of hybrid RDPs arises from the volume of data 
one must process. Consider a scenario where one hundred potential ligand fragments 
are recovered. Given that all are chemically valid, each structure must first be screened 
to ensure steric and electrostatic complementarity with the active site. Structures that 
conflict sterically with the receptor are deleted, although a fair percentage can be 
recovered by pruning appropriate atoms. What remains is the difficult task of 
scrutinizing fragments to find combinations that produce suitable ligands. For 100 
components, there are nearly 5000 unique pairs of structures, along with triplets, 
quadruplets, etc., to consider. Segments of several different fragments may be 
necessary to piece together an optimized, legitimate ligand. 

One of the common problems with all de novo design strategies is the prediction 
(forecast) of binding affinity, or the use of a scoring function to estimate the free energy 
of binding. A large number of solutions is generally available (especially when 
structures that incompletely match the pharmacophoric pattern are examined), and the 
evaluation of the binding affinity (or free energy) becomes the only measure to prioritize 
compounds for retrosynthetic analysis and synthesis. The use of free-energy 
perturbation methods to calculate the AG of binding requires costly molecular dynamics 
calculations and seems practically limited to only minor modifications of a compound 
with known activity, whereas a simple molecular-mechanics estimate is mainly enthalpic 
in nature. When available, internally consistent and predictive QSAR models can be 
used to evaluate software-generated compounds. 

We summarize here our ongoing research in this area: a ligand design system 
based on four programs, CAVITY(30), FOUNDATION(31), SPLICE(32), and 
DBMAKER(33) , used in conjunction with a 3D QSAR model for HIV-1 protease 
inhibitors to predict binding affinity. 

Overview of ligand design 

Our hybrid ligand design process(34) is summarized in Figure 1. Given the crystal 
structure of a ligand-receptor system, an active-site cavity shell is first generated with 
the program CAVITY. The cavity shell simplifies the visual display, revealing regions 
where current ligands can be modified, and allowing the evaluation of final products 
(e.g., steric contacts). The initial step is to define the binding-site cavity with the 3D 
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68 COMPUTER-AIDED MOLECULAR DESIGN 

Figure 1. Overview of CAVITY, D B M A K E R , FOUNDATION, and SPLICE 
ligand design system. 
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OPREA ET AL. De Novo Design 

FOUNDATION then searches 3D databases and retrieves all fragments 
bearing a user-specified minimum number of matching query elements. 
These fragments are collected and analyzed by the EDIT module. Retrieved 
fragments that collide with the receptor are eliminated. 

The remaining components are then pruned to 
ensure steric complementarity with the original 
receptor. 

I FOUNDATION + 3D Databases 

What results is a collection of structures each of which contains 
several different pharmacophoric elements. SPLICE then analyzes 
these fragments and assembles the most complete, novel ligands 
possible by joining the appropriate components. 

Figure 1. Continued 
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pharmacophore. Based on the crystal structure or other methods, the pharmacophoric 
elements are isolated and their 3D relationships identified. Aside from visual inspection, 
GRTD(35) and MCSS(2<5) could be utilized. DISCO(36) is an automated procedure for 
pharmacophoric pattern identification used to generate various pharmacophore maps. In 
the case where no crystal data is available, pharmacophoric elements can be elucidated 
from a working 3D-QSAR model(37). The isolated pharmacophoric elements are then 
transformed into a 3D search query, which specifies both the position of each element 
relative to one another, as well as acceptable atom types. 

In order to search for complementary components, we must have a source of 3D 
data. The program D B M A K E R allows a user to generate databases of 3D structures 
according to numerous specified parameters. These parameters monitor content, 
composition, size, and connectivity information, but allow the program to generate 
random compounds within the scope of these constraints. 

FOUNDATION is then used to search and retrieve all chemical components 
from our databases that contain a specified fraction of the pharmacophoric elements. By 
accepting structures that match various portions of the pharmacophore, we can retrieve a 
large number of diverse building blocks. FOUNDATION aligns each hit with the 
pharmacophore; thus, structures are docked in the active site with the appropriate 
orientation. FOUNDATION approximates the fit of each component within the active 
site, and will discard structures that are clearly contacting the receptor. However, a more 
rigorous screening is required to insure steric compatibility. This is performed by the 
EDIT module of SPLICE. Structures that require subtle modifications are pruned using 
an automated, standardized procedure(32). What results is a mass of components 
residing within the active site that link various elements to one another. 

SPLICE takes these structures and forms new ligands that contain a greater 
number of pharmacophoric elements than any single component. This is accomplished 
by linking ("splicing") fragments that contain different portions of the pharmacophore 
with a chemical bond. Through iterative processing, SPLICE determines the largest, 
most complete ligands through the assembly of appropriate components. 

Generation of vector-contact cavity shell - CAVITY 

Our first concern is to visualize the active site. To study such a ligand-receptor system, 
the use of crystallographic coordinates and powerful molecular modeling software allow 
the visualization of complex steric relationships. Vector-based models have traditionally 
been the most popular representation due to their simplistic form and ease of display. 
However, with the inherent lack of molecular volume information, steric contacts are 
extremely difficult to judge(J#). 

Often, one must immediately know when two complex molecular entities are 
in contact. An example is the docking of ligands within receptor cavities. In this task, 
one is attempting to optimize the fit of the compound by subtle manipulation to improve 
its interaction with the active site. Another situation is the design of a novel compound 
with a more complementary binding surface. Although molecular surfaces make these 
tasks possible, there are drawbacks as well. In most molecular modeling systems, 
surfaces must be calculated and redisplayed with each ligand modification^). 
Furthermore, the docking of surfaces may become visually overwhelming. 

To circumvent this problem, Barry calculated the molecular surfaces of the 
receptor atoms after adding a constant distance to each van der Waals radius (39). By 
setting this constant distance to the van der Waals radius of a particular atom type 
(usually hydrogen) steric contacts are revealed where penetration of the receptor 
molecular surface by the ligand vector model occurs. The advantage of this display 
technique is that the molecular surface of the ligand need not be calculated. This allows 
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uninterrupted ligand manipulation and modification while maintaining continuous 
feedback regarding receptor contact. 

In previous work, we described a flood-fill algorithm to produce casts of the 
region enclosed within a molecular cavity using solid modeling techniques(30). We 
perform the same task here. However, by applying Barry's procedure to our cavity 
isolation algorithms, we generate a display called the vector-contact cavity shell. 

Components of the cavity-like active site of a receptor comprise a minute 
percentage of the protein, and are scattered throughout the primary sequence. The 
majority of the protein consists of supporting sequences, densely folded to position the 
walls of the cavity. Dot surfaces usually include these uninteresting portions of the 
protein, cluttering the visual scene unless the area of interest is selectively edited. 
Because the shell is actually a cast of the cavity, it isolates all molecular surfaces in 
direct contact with the active site. The entire system is reduced to a single, continuous 
shell within which the vector model of the binding ligand must reside. 

Determination of pharmacophoric sites 

The next step is to determine the active-site pharmacophore. A simple method is to 
visually scan the active site for potential hydrogen bond donors or acceptors. One must 
determine the loci and atom types of the functional groups complementary to the 
receptor cavity. Hydrogen bonds of the receptor-ligand complex are calculated. The 
receptor functional groups responsible for inter-molecular hydrogen bonds are isolated, 
and the receptor is scanned to denote all other potential sites where inter-molecular 
hydrogen bonding could occur. Appropriate complementary functional groups are 
placed within the cavity and allowed to seek optimal binding loci by minimization. 
These are added to the original hydrogen bonding sites to produce the complete receptor 
active site pharmacophore. 

Generation of 3D search query - FOUNDATION 

In previous work, we described the three-dimensional database search and retrieval 
program F O U N D A T I O N ^ / ) . Its search functionality is common to many such 
programs, its uniqueness being the use of clique detection algorithms (40)to retrieve 
partial query solutions. The program searches chemical structures containing specific 3D 
configurations of atoms and/or bonds (in any combination of the user-specified query 
elements) that match with pharmacophore requirements. One important feature of 
FOUNDATION is that it determines the structural complementarity that a query 
solution possesses with the ligand-accessible space in which it must reside. To represent 
the ligand-accessible space, we utilize the same filler lattice of points created above with 
the C A V I T Y program that conforms to the internal volume of the active site. Each 
potential hit is then realigned with the query following an RMS-fit procedure. A ligand 
atom is considered to be in the active site if it resides within a user-specified distance 
from any lattice point. A search is then performed to determine how many of the ligand 
atoms connecting the matching pharmacophoric elements reside within the cavity. This 
constraint prevents the recovery of structures that would clearly collide with the 
receptor. FOUNDATION is the heart of our hybrid strategy since it provides the 
building blocks to construct novel ligands. 

Generation of 3D Databases - DBMAKER 

D B M A K E R (33)is a set of programs that allow investigators to generate their own 3D 
structural databases. User-defined parameters monitor the content (rings vs linear or 
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branched), composition (elements and hybridization), size, and connectivity information 
(size and number of rings, spiro ring fusion, etc) of the database. SMILES strings (41) 
are generated, then converted to 3D-structures with CONCORD (42). This assures both 
the quality of the 3D structures produced, as well as the ability to generate them in a 
number of proprietary formats. Methods are present to maintain compound registration, 
thereby preventing duplication. This allows one to continually enlarge old databases by 
the addition of new compounds as they are needed. An unlimited variety of structures 
can be generated with D B M A K E R . Since the process is user-controlled, compounds 
can be tailored to the investigator's needs. For example, if sturdy, hydrophobic 
anchoring segments are required, one can generate aliphatic carbocycles. If flexible 
chains containing hydrogen-bonding elements are needed, then linear structures with 
heteroatoms can be created. D B M A K E R also contains a powerful filtering feature, 
allowing the user to easily remove undersirable chemical constructs. For example, if one 
is attempting to develop peptidomimetics, structures containing amide bonds may be 
selected against. D B M A K E R was developed to allow investigators previously hindered 
by a lack of 3D-information to employ 3D-searching as a tool for molecular design, and 
to assist in design of compounds previously not synthesized. 

Generation of Fragments - FOUNDATION 

The core of our approach is the generation of molecular fragments. Although structures 
from any source may be satisfactory, those which more effectively complement the 
target receptor are preferred. By finding fragments that each contain several 
pharmacophoric elements, we maximize complementarity with minimal structural mass. 
The 3D database search program FOUNDATION(ii) retrieves all fragments containing 
a user-specified minimum number of matching query elements. Each retrieved structure 
is re-oriented to match the configuration specified in the query; thus, structures are 
docked in the active site with the appropriate orientation. Appropriately bonded atoms, 
as well as desired atom types are recovered according to query specification. 

Automated Editing Procedures - SPLICE [EDIT module] 

FOUNDATION approximates the fit of each structure within the active site, discarding 
those that are clearly overlapping the receptor. A rigorous screening is required to 
ensure steric compatibility, especially for data from other sources. The EDIT module of 
the SPLICE(32) program is described below. Each structure is first examined using a 
depth-first search (40) to determine the atoms comprising the shortest paths between all 
pharmacophoric elements. These atoms are termed path atoms. If any path atom collide 
with the receptor, the structure is rejected since maintaining the pharmacophoric pattern 
would be impossible. Receptors are not static, some conformational flexibility being 
observed upon binding, which allows binding for structures that otherwise would 
contact these atoms. To compensate for atomic motion, SPLICE decreases the van der 
Waals radii of user-designated receptor atoms. A l l ligand atoms present in ring systems 
are then located. If a ring clashes with the receptor and contains any path atom, the 
parent structure is also rejected. Structures that pass the above criteria are edited with an 
automated procedure to ensure steric fit. Starting from the most distal atoms and 
proceeding towards the interior, the structure is systematically checked for receptor 
contact. Fragments are clipped off until the structure is satisfactory. Atoms that contact 
the receptor are removed along with all neighbors. Should any part of a non-essential 
ring collide with the receptor, the entire ring structure is deleted. In the case of receptor 
contact with fused multi-ring systems, only the atoms that are not stably locked in any 
ring are deleted. When completed, each structure should reside within the active site, yet 
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retain the necessary elements that maintain its conformation. What results is a mass of 
components residing within the active site that link various elements to one another. 

Component Assembly - SPLICE 

Novel ligands are then assembled from the set of overlapping fragments, each 
containing a subset of the pharmacophore. The union of two fragments requires a 
precise alignment of atoms to allow the formation of a linking bond (e.g., bond angles 
and lengths have to be within tolerance levels). To determine which structures can be 
joined, pairs of structures that both contain a mutual bond whose atoms overlap nearly 
perfectly are isolated. For example, structure A contains a bond (A1-A2) that overlaps 
nearly perfectly with bond (B1-B2) in structure B. If the distances between atoms A l <-
> Β1 and atoms A2 <-> B2 are within a user-specified range, then structures A and Β 
can be joined by creating the new bond: A1-B2. We define this procedure as splicing 
A and Β together at bond A1-B2 to form a new hybrid structure. When processing is 
completed, SPLICE automatically joins each matched pair of fragments to form a novel 
structure. These molecular structures are stored as Sybyl mol2 files(9). Depending upon 
the minimum number of elements specified for an acceptable combination, resulting 
structures may not satisfy the entire pharmacophore. There may exist several fragments 
that must be combined to form the most complete ligand. To find these combinations, 
SPLICE is repeatedly executed using the structures produced in the previous generation. 
With each run, the number of query elements required is increased. Through iterative 
processing, SPLICE determines the largest, most complete ligands through the 
assembly of appropriate components. The resulting ligands are then processed within 
Sybyl, and a preexisting QSAR model is used to evaluate the binding affinity. 

Example of denovo design - HIV-1 protease 

Figure 2 details an example of our de novo design work. Here, we will attempt to 
generate ligands capable of binding with the P1/P2 region of the HIV-1 protease active 
site(43). As detailed in this figure, the P1/P2 region is a crescent shaped structure 
incorporating both PI and P2 sidechain binding pockets. A ligand binding 
pharmacophore deduced from the crystal structure of the protease is shown 
superimposed upon a CAVITY(JO) generated cast of the active site. This region has 
numerous hydrogen bond donor and acceptor sites scattered throughout. As shown in 
the side view, this area is also relatively flat. 

From our observations of this region, we can conclude that a planar, cyclic 
structure would best serve as a foundation upon which complementary functional 
groups could be anchored. Although this portion of the active site is fairly flat, it is also 
quite extensive in area. Thus, we can use five-membered, six-membered, and fused 
multi-ring assemblies as a foundation for ligand construction. 

This is accomplished by using the three cyclic templates shown in the figure in 
conjunction with DBMAKER(33). Specific combinations of C=N, N=C, C=C, C(=0), 
N , and Ο will produce planar rings when written to SMILES(47) strings with the cyclic 
templates. A l l carbon atoms in the backbone must be sp2 hybridized to assure planarity, 
hence our choice of elements. With these components, the generated rings are planar 
and contain numerous sites to which substituent groups may be attached. 

Two to four sidechains are specified per structure, each containing one to four 
atoms or functional groups. Four sidechain components are used: "C", "N" , "O", and 
MC(=0)". When used in various combinations, D B M A K E R can generate SMILES 
representations of functional groups that include alcohols "CO", ethers "COC", ketones 
"CC(=0)C", esters C(=0)OC, aldehydes "CC(=0)", acids "CC(=0)0", amines "CN", 
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HIV-1 Protease Active Site Crescent-shaped region: PI + P2 
Relatively flat with pharmacophoric elements 

scattered about. 
Employ flat cyclic structures as anchors upon 

which functional groups w/ be attached. 

Pharmaconhore* Ο HBONDACCEPTORS rnarmacopnore. Q H B O N D DONOR extension 

SIDE VIEW 

HIV " C R E S C E N T " D A T A B A S E - P A R A M E T E R S USED 
Component Backbone Sidechain # Atoms No. of Component 

Freq. Freq. Connections 
C=N 0.20 0.00 2 3=2 
C=C 0.20 0.00 2 3=3 # Sidechains 
N=C 0.20 0.00 2 2=3 

C(=0) 0.20 0.10 1 2 2 (40%) 
C 0.00 0.30 1 4 3 (50%) 
Ν 0.10 0.30 1 3 4 (10%) 
0 0.10 0.30 1 2 

T E M P L A T E S ^ 

"+1++++Γ °[ "+1+++++Γ I 
"+1+++2+1++++2" I .JL> 

Sidechain 
Lengths 
1 (30%) 
2 (30%) 
3 (30%) 
4 (10%) 

Figure 2. Use of C A V I T Y , FOUNDATION, and D B M A K E R to generate 
ligands capable of binding with P1/P2 of HIV-1 protease active site. 
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C R E S C E N T DBASE FOUNDATION-FX 
3D SEARCH PROGRAM 

3D S E A R C H Q U E R Y 

(7)·· 

(8) 

·· HO-CH2 — NH 0(3) 
ι 11 

(1)0H 

^ C - C H r O H 
I 

(10) 

(4) 
0 
II 

(3) (8) (9) 
ο I / 
JJ Η 

HC - C H 2 - C H 2 ^ ' S

C ' ^ C H j - N ^ ....... (10) 

c - c 
C1 (=0)C(NCN)=CC=C 1 (OCCC(=0)) 

C1 (NCO)=C(C(=0)CO)N=C(0)N=C 1 
(7) 

CH 2-NH 2 ....... (9) 
Ο 
(2) 

(2) 0) 
.........HO-CH2-CH2 -Ο Ο 

Λ » 
H O ^ 

(D 
C1(C(=0)0)=NC=C(0)N=C1(0CC0) 

01) 

NH2 ........ (5) 

(12) -

(4) 
Cl=CN=C2Cl=C(C(=0)N)OC(COCN)=C2 

Ν ( 3 ) 

H - C ' W ° H 

W // 

.H 2 N-CH 2 — c' N H 2 ' " 

O(l) 
N1C(0)=C(N)C(C(=0)CN)=C1 

Ο (3) 
II 

-(H) 

'(10) 

(12) (2) 0 
ι II 

H2N 0 X C 
Γ I II 

^ C ^ c 

(1) 
Cl(=0)C(C(=0)N)=CN=C(OCN)01 

(9) 

(1) 0=C 
Η 

Η 
C H 2 - N . J 

II 
Ν 

CH 2 -CH 2 -NH 2

V 

(5) 

(6) 

OH ...«...(10) 
N1C2=CC(CCN)=CC2=C(0)N=C1(NCC(=0)) 

Figure 2. Continued 
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and amides "C(=0)N". These components are listed in the parameters file along with 
their frequencies of utilization. 

An initial group of 5000 SMILES strings was randomly produced within the 
scope of the defined parameters. Processing and extraction of unique SMILES strings 
followed, leaving 4125 different structures. These strings were then converted to 
S Y B Y L multi_MOL format with CONCORD. The entire process required 
approximately 15 minutes of CPU time (R4000 Indigo). 

To determine how well these structures complemented the active site for which 
they were designed, a three-dimensional database search was again conducted against 
the HIV-1 protease pharmacophore using the program FOUNDATION-FX(^ ) . The 
search was performed to retrieve structures containing any combination of 4 or more 
query elements. A number of constraints were used to limit the number of hits retrieved. 
First, a maximum of four hits per structure (different conformations) was specified. 
Second, the coordinates of each retrieved hit were required to differ from any previous 
hit by greater then 0.500 angstroms RMS. deviation. Third, a maximum error of 0.500 
angstroms RMS deviation from the query was tolerated. Fourth, a maximum number of 
4000 search conformations was allowed per database structure. Finally any hit was 
required to fit within the active site using a reduced atom radius factor of 0.700. 

Given the query of 12 hydrogen bond donor and acceptor sites, 25 five query 
element hits were retrieved (9 different structures) and 140 four query element hits were 
found. Selected structures are shown in Figure 2 along with the pharmacophoric 
elements they complement. The group of retrieved compounds is diverse, each 
engineered to specific criteria in order to complement the P1-P2 region of the HIV-1 
protease active site. 

Overview of the C o M F A technique 

CoMFA(J7) (Comparative Molecular Field Analysis) is a 3D quantitative structure-
activity relationship (3D-QSAR)(45) method that computes steric and electrostatic 
interactions for a series of ligands with a regular lattice of probe atoms(37,46). The 
results are tabulated and multivariate analysis methods yield a QSAR model for the set 
of compounds in the training set. The recommended statistical technique for CoMFA is 
partial least squares(47) (PLS), with cross-validation (leave-one-out method) to select, 
among several PLS models, the one with the highest internally predictive value^S). The 
most common version of CoMFA is implemented in the QSAR module of Sybyl(9). 

The following hypotheses form the basis of the CoMFA approach(4<5): 
• non-covalent receptor-ligand interactions can be simulated by the steric (Lennard-
Jones) and electrostatic (charge-charge) interactions of a ligand with a probe atom; 
• the unknown receptor can be replaced by a regular grid, and steric and electrostatic 
interactions of probe atoms with each aligned ligand are calculated at grid points; such 
calculations generate columns that are tabulated for each molecule (row) in the series; the 
set of ligands upon which the CoMFA model is derived is termed training set, whereas 
other ligands predicted (or tested) with the training-set based CoMFA model are 
included in an external (or test) set; 
• multivariate analysis (PLS) of the resulted table yields a regression model which 
highlights those features of the receptor that are implied by the given structure/activity 
data set. The resulting QSAR coefficients (fields) are then examined graphically as 
contours in 3D space. 

A successful CoMFA study has to be a model with(49): 
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• self-consistent properties (robustness, e.g., similar molecular properties for similar 
ligands occupy the same 3D-space - based on user-defined alignment rules); the cross-
validated r 2 of a robust CoMFA model should be higher than 0.5; 
• predictive power (e.g., the model is able to predict compounds that were not present in 
the training set within reasonable limits - i.e. predictive r 2 > 0.5) 
• explanatory power (e.g., the model is able to explain the interactions between the 
examined series of compounds and their putative binding site). 

Flexible compounds are the most difficult case for 3D-QSAR data sets. The 
active conformation for each molecule and its superimposition on other structures (the 
alignment rules) have to be chosen, either in accordance with available experimental 
data, or based on hypothetical assumptions. Defining the alignment rule is a key step in 
3D-QSAR. For flexible structures, a variety of methods can be used. If crystallographic 
data are available, the field-fit procedure(50) may prove useful (crystals being used as 
template molecules). This procedure minimizes the RMS difference between a fixed 
(steric and electrostatic) template field and the corresponding fields of the structure being 
aligned, by adjusting atomic coordinates (hence, field values). This procedure has been 
extensively discussed(57) in conjunction with alignment issues, and applied to 
determine the alignment of 52 human immunodeficiency virus 1 protease (HIV PR) 
inhibitor peptides(52) based on 7 experimentally determined structures of inhibitor-
enzyme complexes. 

Methods that investigate conformational space (e.g., using simulated annealing 
and cluster analysis(53)) may find the best match between various structurally dissimilar 
ligands when no crystal data are available. During this procedure(5J), low-energy 
conformers are selected and minimized pairwise - and the best match obtained from all 
different conformations can be selected. For unknown receptors, the Active Analog 
Approach may be used in conjunction with (constrained) systematic search(54) 
(implemented as the RECEPTOR™ module(55) in Sybyl) to generate a set of sterically 
allowed conformations and to determine the existence of common 3D orientations of 
specified functional groups (the pharmacophore), in a series of compounds. 

Using five different alignment rules and crystallographic data for seven ligands, 
a CoMFA model for HIV protease inhibitors was developed(52). The CoMFA PLS 
results for Alignment I yielded a cross-validated r 2 of 0.778 (leave-one-out 
technique^)), with six principal components(56), and a conventional r 2 of 0.984. The 
predictive(J7) r 2 (for 18 compounds) was 0.662. The same model was submitted to a 
H A S L (Hypothetical Active Site Lattice) analysis. HASL is a 3D-QSAR method which 
distributes partial activities at molecular lattice points (defined within the van der Waals 
volume of each ligand)(57). H A S L has a predictive power comparable to CoMFA 
(conventional r2^ 1.00, for 59 compounds, and predictive r 2 0.438, for 18 
compounds)(5o>). Due to methodological differences, the outliers in prediction for the 
two methods are not identical. By excluding the common outlier (compound mlO in the 
test set(52)), the predictive power improves for both methods: 0.74 (CoMFA) and 0.53 
(HASL). The robustness of the HIV-protease inhibitors model and its predictive power 
were conserved between two different 3D-QSAR methods. 

Evaluation of the predictive and explanatory power of QSARs 

The fundamental problem of the above-mentioned (and similar) 3D-QS A R methods is 
that the proposed model is not uniquely determined. For flexible molecules, many 
conformers can present a particular pharmacophoric pattern, and the rationale for 
choosing one (the alignment rule) is usually done on an energetic and/or experimental 
basis. If the choice of the alignment has no reference to experimentally determined 
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structures, results have to be treated with caution(57), because other conformations may 
in fact bind to the receptor, while the proposed alignment rule compensates inadequacies 
in considering entropie and enthalpic effects. A similar problem is encountered in 
choosing test set conformers. Test set compounds (with known activity, external to the 
model) are used to verify the predictive power of different QSARs. In the case of 
flexible compounds, the alignment rules are already defined, hence the alignment of test 
compounds is constrained by the existing model. Applying the same conformational 
choices and superimposition procedures to generate a test set of single conformers is 
useful only if insignificant changes exist in the structures present in the test set, 
compared to molecules in the training set. 

If test set molecules have flexible moieties not present in the training set, the 
appropriate conformation is ambiguous even within the alignment rules. In this case, a 
(limited) conformational analysis performed on the test set molecules, using the 
alignment rules as constraints during conformational search, will generate multiple 
conformers for the same ligand - all consistent with the initial model, yet geometrically 
different and hence with a range of predicted activities that often spans several log units, 
instead of a single value (Figure 3). A rational approach to select the active conformation 
for prediction is required. 

We have proposed(59) a semi-automated procedure, NewPred, compatible with 
the Sybyl/CoMFA method, that allows limited conformational analysis based on the 
alignment rules of an initial CoMFA model, and which automatically selects a single 
conformation for test set compounds, then predicts activities based on the initial QSAR. 
A l l conformers are minimized, either in the average steric and electrostatic field of the 
CoMFA model (option available in Sybyl), using the field fit procedure, or, preferably, 
in the receptor-binding site (when available), to optimize individual conformer 
alignment. The lowest energy conformer found is then chosen to be included in the final 
test set (which is used to evaluate the predictive power of the model). 

NewPred has been applied to a set of 30 HIV-protease inhibitors, used to 
evaluate the predictive power of a previously described model. The predictive power 
proved to be significantly better for neutral (as opposed to charged) models(59), and for 
CoMFA fields compared to hydrophobic fields(49) (using HINT(60)). The resulting 
proposed conformations(59) for 1 (S)-amino-2(R)-hydroxyindan-containing 
peptides(67) was used to explain their poor inhibitory activity. 

The steps leading to a robust CoMFA model, i.e. choice of compounds, 
decisions concerning conformer selections and superposition rules, are of paramount 
importance, and are usually detailed in all CoMFA reports. The aim of any QSAR 
analysis is to go beyond that point, and make valid conclusions to be used in drug 
design. However, reports detailing this post-processing step - the analysis of the 
CoMFA fields, were scarce in the literature. 

The statistical significance(62-64)and predictive power(59,65) of QSAR and 
C o M F A models is subject to discussions, but there is no indication as to how the 
explanatory power of such models is tested, and no details of the C o M F A post
processing step have been previously presented. Most C o M F A papers graph (by 
contribution) the scalar product of the standard deviation and the QSAR coefficient(66), 
for both steric and electrostatic fields, without mentioning use of other information 
available to the molecular modeler. 

For drug design purposes, a detailed examination of other CoMFA fields and 
their interpretation, has been provided(49). Our comparative study of various fields 
available(9) in CoMFA has shown that, to a certain degree, C o M F A fields have 
structural correspondence in receptor atoms. For the case of HIV protease, different 
CoMFA fields from our HIV-protease inhibitors model were compared with the binding 
site crystal structure. The average steric field (at 70% contribution level) matches the 
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2 

î ο in 
y 
Oh 

0 
700 800 900 1000 11 00 

Total energy of the complex (kcal/mol) 

Figure 3. Total energy of active-site and inhibitor complex vs. predicted activity 
of isolated conformers57 for compound m3. Twelve local minima, representing 
geometrically and biologically different conformers, were obtained using 
NewPred57. 

invagination contours between He I 8 4 and Pro^l (SI to S2'), also between Val 182 and 
lle50 (S2). Steric contours overlap with A r g l ° 8 (S3), Asp30 (S2), lie5*) and G l y 4 9 

(SI), and with four residues in Sl'-S2' (Pro 8l, Ile 1 5^, G l y l 4 8 and G l y l 4 9 ) . 
Electrostatic contour regions correspond with immediate contact residues Asp^O (S2), 
A s p 2 5 (Sl-ST), G l y l 4 9 (ST), and also with long-distance polar contact residues 
Argl&"7 (S2') and A s p l 2 9 (S2'-S3'). Some of the residues involved in non-polar 
(Del 8 4 , Prol 8 ! , Val I 8 2 ) and polar (Asp 2 9, Asp I 2 5 and Gly 2 7 ) contact with the 
ligands could not be overlapped at the usual (80%) contribution levels. These limitations 
are probably due to the reduced diversity of the training set. Using the combined 
information from CoMFA steric and electrostatic fields, and HINT fields(67) on the 
same model, a new hydrophobic pocket (between Gly 4 9 , Ilê O, G l y l 4 9 and Ilel̂ O) has 
been identified in the binding site, behind the scissile bond. While this pocket is not 
occupied by any of the ligands, its occupation would lead, according to our results, to 
an increase in binding affinity. Thus, the explanatory power of QSAR models becomes 
instrumental in suggesting new targets for drug design. 

The HIV-protease inhibitors CoMFA model has been used to predict compounds 
that were designed using our in-house de novo design software. Novel transition-state 
isostere compounds have been suggested, and their binding affinity was predicted to be 
in the nanomolar range. While some of the earlier synthesized compounds did not 
perform as predicted in the in vitro assays, the later compounds show encouraging 
results(6#). Using a good model in terms of statistical significance, internal consistency 
and predictive power, to evaluate de novo designed ligands offers a promise as a tool 
for drug design. 
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Chapter 6 

De Novo Design of Highly Diverse Structures 
Complementary to Enzyme Binding Sites 

Application to Thermolysin 

Regine S. Bohacek and Colin McMartin 

Research Department, Pharmaceuticals Division, Ciba-Geigy Corporation, 
Summit, NJ 07901 

A computer program for de novo molecular design was used to explore 
the diversity of molecules complementary to the binding sites of 
enzymes. The program, GrowMol (1,2), generates molecules with 
spatial and chemical complementarity to the three dimensional 
structure of a host binding site. The molecules are created in the host 
binding site one atom or functional group at a time. At each step the 
position and type of atom to be added is randomly selected using 
Boltzmann statistics to bias acceptance towards atoms which can form 
favorable interactions with the binding site. 

When applied to thermolysin, the program generated structures 
which were identical to or closely resembled known inhibitors. In 
addition, the program rapidly produced tens of thousand of distinct 
molecules which display a large variety of structural motifs. New 
methods to analyze the resulting structures have been developed. 

An analysis of the diversity of thermolysin inhibitors generated 
by GrowMol will be presented. 

The accurate 3-dimensional structure of a binding site, in principle, provides all the 
information required for the design of high affinity drugs. A major challenge for 
computer-aided drug design is to develop algorithms which will rapidly produce 
lists of compounds which have a high probability of binding strongly to a given 
binding site. Ideally this list will contain highly diverse structures representing all 
the major structural motifs which satisfy the requirements of the site. 

Two main strategies are currently being used for this purpose. One method 
explores data bases by docking known compounds into the binding site and 
evaluating their interactions. The second approach generates, de novo, molecular 
structures that fit into a 3-dimensional representation of a binding site. This 
method is not limited to the molecules registered in a data base and has the 
potential of revealing a much larger diversity of structures. 

A number of de novo methods have been developed which differ from each 
other in the ways the structures are generated and evaluated. One method first 
identifies "hot" spots in the binding site where a ligand molecule can form a 
hydrogen bond or fill a hydrophobic pocket and then docks large, predetermined 

0097-6156/95/0589-0082$12.00/0 
© 1995 American Chemical Society 
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6. BOHACEK & McMARTIN De Novo Design of Diverse Structures 83 

molecular fragments into these sites. The fragments are then connected to form 
molecules (3). Another method constructs molecules by connecting smaller 
molecular fragments which are linked to form molecules. At each step the addition 
of a new group is evaluated using molecular mechanics energy (4). A program has 
recently been reported which first generates fragments to fil l a volume and then 
changes the atoms to satisfy the electrostatic and hydrophobic requirements of the 
binding site (5). Other methods construct structures an atom at a time. One 
program uses only sp3 carbons (6) while another uses a complete set of atom types 
and evaluates the structures using molecular mechanics energies both in the growth 
step and for the final ranking of die structures (7,5). 

In this paper, we present a progress report of the methods we are developing to 
meet the challenge of de novo ligand design. Our program, GrowMol, has been 
designed to rapidly produce large numbers of diverse structures which are highly 
complementary to the binding site. GrowMol "grows" structures into a binding site 
an atom or small fragment at a time (2). The program uses a rapid method for 
evaluating the complementarity of each new atom to the binding site. This provides 
a fast method to control the generation of atoms during the "growth" process. 
Complementarity has been found to correlate with potency and is, therefore, also 
used to rank order the structures in the final evaluation step. 

Use of Complementarity to Evaluate Binding Affinity. 

To be efficient, a program which rapidly grows potent molecules in a binding site 
needs to be able to asses the likely effect on potency of atoms or functional groups 
which are being considered for addition to the growing molecules. We have 
previously developed an algorithm which accurately describes the complementarity 
between a ligand and an enzyme binding site (9). 

The algorithm was developed using high resolution protein crystal structures. 
Using a molecular modeling program, M A C R O M O D E L (10), a buried strand of 
protein was identified and removal from the structure creating a cavity. The strand 
was treated as a virtual ligand and the cavity as a virtual binding site. A large 
number of virtual ligand/binding site pairs were created. The solvent accessible 
surface was then computed for each virtual binding site. Rules for describing the 
complementarity properties of this surface were then tested. These rules were 
based on properties of the binding site atoms including the electrostatic potential 
and electrostatic gradient. In each case the ability of a set of rules to predict the 
hydrogen bonding and hydrophobic character of ligand atoms lying close to the 
surface was analyzed. Several hundred interactions were examined for each set of 
rules. The most effective rules were based on distances of a point on the accessible 
surface to the nearest atoms in the binding site. When the distance from the 
surface to a binding site hydrogen bonding hydrogen is less than 2.6 Angstroms, 
then a ligand atom close to that point was found to be a hydrogen acceptor (i.e. 
C=0, OH) 94% of the time. When the distance from the surface to a binding site 
oxygen was less than 3.0 Angstrom, then the atom closest to that point was found 
to be a hydrogen bond donor 91% of the time. Points on the surface lying at a 
distance greater than 2.6 and 3.0 Angstrom to hydrogen bonding hydrogens and 
oxygens, respectively, indicate that the nearest ligand atom will be hydrophobic 
91% of the time. 

These rules provide a powerful method for the prediction of complementarity. 
In a further application of this algorithm, the complementarity scores of a series of 
thermolysin inhibitors was determined. The interactions between the inhibitors 
and thermolysin were known from the crystal structures of the 
thermolysin/inhibitor complexes. Using the above mentioned algorithm, the 
complementarity scores were found to correlate accurately with potency. 
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84 COMPUTER-AIDED MOLECULAR DESIGN 

For de novo growth we wanted a description of complementarity encoded into 
a three dimensional grid representation of the binding site. A grid map of this sort 
can then be used to very rapidly evaluate the potential contribution of each atom in 
the grown structure. The rules for the accessible surface were, therefore, modified 
to meet this requirement. 

Instead of considering only the accessible surface, a 3-dimensional 
representation of the entire volume of the binding site cavity is generated. This 
volume is divided into a grid at 0.25 Angstrom intervals. Each grid point is 
encoded with information about the nearest binding site atom. The binding site is 
divided into three major zones: forbidden, contact, and neutral. A grid point is in 
the forbidden zone if it is too close to one of the binding site atoms. The contact 
zone is further divided into hydrogen bond donor, hydrogen bond acceptor, and 
hydrophobic zones. The neutral zone includes all grid points which are in none of 
the above zones and less than the van der Waals radius plus 3.5 Angstroms from 
binding site atoms. The exact definitions of these zones have been described (2). 
Generation of the binding site grid map and assignment of all the values is 
performed by a computer program called GRIDBOX. 

The cutoff distances used to construct the different zones for this grid map are 
designed to allow extra space for the generation of structures which upon further 
optimization may adopt conformations that are spatially and energetically 
compatible to the binding site. A second grid map is generated to evaluate the 
structures after they have been subjected to energy minimization in the active site. 
More stringent cut-off distances are used for this grid map. 

The relationship between potency and favorable enzyme/inhibitor contacts, 
was evaluated using the data for thermolysin inhibitors which had been used for 
the accessible surface study. Nine potent thermolysin inhibitors, for which the 
binding mode to thermolysin had been determined by X-ray crystallography, were 
placed in the grid representation of the active site of thermolysin. The number of 
hydrophobic contacts (defined as the number of ligand carbons other than carbonyl 
carbons which occupy the hydrophobic zone) and the number of hydrogen bonds 
(i.e., the number of ligand hydrogens in the hydrogen acceptor zone plus the 
number of ligand oxygens found in the hydrogen bond donor zone) was determined 
for each ligand. These interactions were determined using a computer program 
called E V A L which uses the grid map to determine the binding site zone occupied 
by each inhibitor atom. Table I gives the results of this analysis. A multiple linear 
regression was carried out to correlate the potency of each inhibitor with the 
number of hydrophobic contacts and the number of hydrogen bonds each inhibitor 
makes with the enzyme. Using Grid Map 2, die following results were obtained 
with the structures determined by X-ray crystallography: 

log(Ki)= 3.16 -0.42 (PHOB) -0.39(HBOND) 

significance (p) 0.0003 0.0049 0.0091 
r 2 = 0.94 n=9 sd=0.40 p=0.0002 

where PHOB = the number of hydrophobic contacts 
HBOND = the number of hydrogen bonds 

Generated structures which satisfy the preliminary complementarity 
requirements are energy minimized in the active site and then re-evaluated. In this 
final evaluation potency is estimated using a linear regression equation relating 
potency to complementarity. Therefore, it was necessary to carry out the linear 
regression analysis using the complementarity scores obtained from known energy 
minimized structures. The nine thermolysin inhibitors were each energy 
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minimized in the active site of thermolysin using the GROWMIN program 
(McMartin, C. unpublished). The correlation between biological potency and 
complementarity for these structures gave the following results: 

log(Ki)= 2.49 -0.18 (PHOB) -0.42(HBOND) (1) 

significance (p) 0.0175 0.1381 0.0395 
r 2 = 0.80 n=9 sd=0.77 p=0.0086 

The energy minimized structures do not exhibit the same high degree of correlation 
between complementarity and potency as the structures in the conformations 
determined by X-ray. This decrease of correlation is not entirely surprising as the 
zones of the accessible surface upon which the grid boxes were based were 
parameterized using high resolution x-ray diffraction data of proteins. In this 
study, the linear regression equation (1) obtained using the energy minimized 
compounds was used for estimating the potency and ranking GrowMol generated 
structures. 

We do not claim that this method can accurately predict potency. However, 
these results do indicate that there is a relationship between potency and the 
number of favorable enzyme/inhibitor contacts. 

Generation of Molecular Structures. 

The generation of molecular structures by GrowMol can be divided into three 
distinct steps: A) initiation, B) "growth" of each new atom, and C) acceptance or 
rejection of each new atom. 

A) Initiation. The user selects a root atom, i.e. a point where "growth" is initiated. 
The root atom can be any atom present in the binding site structure from which a 
molecule is to be "grown". The atom can belong to die enzyme or to an inhibitor 
fragment. In the example shown below the root atom is the carbon atom attached 
to sulfur. 

The computer program determines growth points for the root atom. Growth 
points indicate all the positions available for new atoms which might be added to 
the growing structure. The position of the growth point for a given atom is 
obtained using a lookup table of rotational isomeric states appropriate for that 
atom. 

B) To "Grow" a New Atom. The position and atom type are randomly selected 
using Monte Carlo sampling: 

1. ) One of the growth points is randomly selected 
2. ) An atom of a functional group is randomly chosen from the functional 

group library: 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
00

6

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



6. BOHACEK & McMARTIN De Novo Design of Diverse Structures 87 

C, Ν, -N=, Ο, Ο-, H, C=0, N-H, benzene or a flve-membered aromatic ring 
with a nitrogen in one of the five positions 

3.) The coordinates of the new atom are computed using the bond length, 
bond angles and dihedral angles associated with the growth point. These 
geometrical parameters are based on the MM2 force field (22). 

C) Evaluation of New Atom. The atom is accepted or rejected depending on its 
degree of complementarity to the binding site using Boltzmann statistics (for more 
details describing this method see reference 2): 

1. ) The binding site zone occupied by the new atom is identified. If the atom 
is in a forbidden zone, i.e., too close to a binding site atom (see (a) in the diagram 
below), the atom and the associated growth point are erased and the program 
returns to step B). 

2. ) If the atom is in one of the allowed zones, a complementarity score is 
assigned. 

A metropolis-like sampling criterion is used to decide if the new atom will be 
retained and added to the growing chain. The probability of retaining the new 
atom is given by the Boltzmann factor: 

BF= exp (- complementary score/RT) 

(a) (b) (c) 

3) If the atom is accepted, growth points are computed, and it is connected to 
the growing chain, otherwise it is erased. If the atom, for example an oxygen, is in 
a non-complementary zone, such as a hydrophobic zone, then the probability is 
high that it will be rejected (example b above). If the atom or group is 
complementary to the binding site, such as a benzene in a hydrophobic zone, then 
the probability is high that it will be retained (example c above). 

4) The process continues until the user specified number of atoms has been 
reached and the molecule is saved. 
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88 COMPUTER-AIDED MOLECULAR DESIGN 

If, however, in the course of the generation all of the growth points have been 
used and the user specified number of atoms or complementary contacts have not 
been reached, the molecule is not saved. In either case the program proceeds to 
step 5 below. 

5.) The growth point arrays are re-initialized and the program returns to the 
beginning to "grow" a new molecule until the user specified number of molecules 
have been generated. 

A few additional rules are used to ensure chemically realistic structures. For 
example, each sp2 must be connected to at least one other sp2 atom, and 
chemically unstable groups such as peroxides are not permitted. 

Evaluation and Ranking of Structures. 

GrowMol generates structures rapidly. Structures with an average size of 14 atoms 
were generated at a rate of approximately 17 structures per minute using a VAX 
6410 computer. Therefore, large number of structures can be generated in a 
relatively short time. Although all the structures are generated to be spatially and 
chemically complementary to the binding site and to have low conformational 
energy, they do not all form equally good interactions with the binding site. To 
rank order die structures, two criteria were used: a) favorable interactions with the 
enzyme atoms (expressed either as the number of favorable contacts or the 
estimated Ki) and b) the internal molecular mechanics energy of the bound 
structures. 

The procedure used is outlined in Table Π. The first step is the rejection of all 
duplicate structures. Next, those structures with a minimal degree of 
complementarity are selected for further optimization. Each of these structures is 
subjected to energy minimization in the active site and energy minimization in the 
absence of the active site. The difference between the energy of the bound 
conformation and the energy of the conformation minimized outside of the binding 
site is taken as an initial measure of the ligand strain energy. 

The ligand strain energy is not used as an estimate of potency ( as we have 
found no correlation between potency and ligand strain energy) rather as a measure 
of how well the structures fit into the binding site cavity. Structures with a strain 
energy larger than a user specified strain energy are rejected. 

After energy minimization, a second more stringent degree of 
complementarity is applied. Grid Map 2 is used to determine the number of 
hydrophobic contacts and the number of hydrogen bonds. If the binding site is one 
for which sufficient data is available, the correlation between potency and 
favorable contacts can be determined. The coefficients of the regression equation 
correlating potency with complementary contacts, such as equation (1), are then 
used to compute an estimated potency. This allows for the estimation of the Ki 
from the number of favorable contacts. The user specifies a minimal threshold and 
retains only the best structures. 

The remaining structures can be clustered into families based on similarity. 
Two structures are taken to be in the same family if 60% of the atoms of the larger 
structure are within 0.5 Angstrom of an atom in the other structure. A 
representative structure with the lowest Ki and the lowest strain energy is selected 
from each cluster for visual inspection. 

Application. 

Enzymes are "designed" by nature to bind to the transition state of a substrate. We 
were intrigued by the question: how different can a molecule be from a substrate 
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6. BOHACEK & McMARTIN De Novo Design of Diverse Structures 89 

Table Π. Results for evaluation of 22,000 structures generated in the SI' and S2' 
subsites of thermolysin 

Total number of grown structures 22,000 

Unique structures 12,654 

Criterion: chemical complementarity 
(at least 2 hydrogen bonds and 
3 hydrophobic contacts) 5,000 

Energy minimize in the active 
site and in vacuum; 
compute the strain energy 

Unique structures 4,449 

Criterion: strain energy 

(less than 35 kJ/mol) 3,937 

Criterion: complementarity 

(estimated Ki of < 2.0 mM) 1,373 

Cluster into families 

Select representative structures 
from each family 308 D
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90 COMPUTER-AIDED MOLECULAR DESIGN 

and still bind to the enzyme? The question can be partially explored by the 
systematic, synthetic modification of inhibitors based on known substrates. 
However, this strategy is unlikely to sample the full range of possible structures. 
Since GrowMol uses only the 3-dimensional structure of the binding site as a 
design template, it is an ideal tool to explore the structural diversity of molecules 
complementary to a known binding site. 

GrowMol has been applied to a number of different enzymes including serine 
proteases, such as thrombin; aspartic proteases, i.e., pepsin and HIV protease; 
kinases; and purine nucleoside phosphorylase (PNP). For this study we chose the 
zinc métallo protease thermolysin for the following reasons: high resolution data 
of a variety of inhibitors complexed to thermolysin is readily available (79), the 
thermolysin binding site does not change appreciably when complexed with 
numerous different inhibitors, in the crystalline state thermolysin is enzymatically 
active (76), and there is considerable interest in zinc métallo protease inhibitors as 
therapeutic targets. 

For this study only the SI' and S2' subsites of the thermolysin binding site 
were used. The binding site atoms were obtained from the structure of thermolysin 
bound with Z G P L L (75). The structure, labeled 5TMN was obtained from the 
Brookhaven Protein Data Bank (25,24). This part of the binding site has the best 
defined pockets, and X-ray crystal structures of small inhibitors which only use 
this part of the binding site are available. Known inhibitors display a variety of 
different zinc chelating groups. For this study a sulfur atom which binds to the 
catalytic zinc ion was selected to be the root atom. The position of the sulfur atom 
as well as the initial growth point, which defines the dihedral angle that an atom 
connected to the sulfur will adopt, was obtained from die coordinates of thiorphan 
complexed with thermolysin determined by X-ray crystallography (7 8 ). The 
structure of thiorphan is shown in Table IV. In this study, we decided to probe the 
site using aliphatic thiols, and, therefore, a carbon was selected for the first guest 
atom. 

To study diversity, three large sets of structures were generated: 50,000 with 
an average of 12.0 atoms, 50,000 with an average of 13.8 atoms and 72,000 with 
an average of 18.7 atoms. The number of unique structures in each of these sets 
was determined. Table ΠΙ summarizes the results. 

Table ΙΠ. Effect of Molecular Size on the Number of Unique Structures Generated 
in the Binding Site of Thermolysin 

Average no. 
of atoms per 
structure 

No. of structures 
generated 

No. of unique 
structures 

Replication 
ratea 

ab 

12.0 50,000 3,938 12.7 1.99 

13.8 50,000 10,543 4.7 1.96 

18.7 72,000 39,680 1.8 1.76 

SOURCE: Reprinted with permission from ref. 2. Copyright 1994. 
aThe number of structures divided by the number of unique structures found 
°Measure of diversity: Number of unique structures = α (number of atoms) 
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6. BOHACEK & McMARTIN De Novo Design of Diverse Structures 91 

To estimate if the sample size was large enough to adequately sample all the 
possible structures which could be generated, the average replication rate for each 
set was determined. For the smallest set, each unique structure was replicated on 
average 12.7 times. This indicates that most of the unique structures of this size 
that can be generated by this version of GrowMol were found. For the larger set, 
the replication rate was only 1.8 even though 72,000 structures were generated. 
We conclude, that the number of diverse structures obtained will almost certainly 
underestimate the true diversity of molecules in this size range. 

The increase in the number of diverse structures with increasing molecular 
size is due to a combinatorial explosion. Therefore, the number of unique 
structures might be expected to increase as an exponential function of the number 
of atoms in the molecule: 

NUnique = a N a t o m 

This equation expresses diversity in terms of a single parameter, a. The value 
found for α was close to 2 (1.99 and 1.96) for the first two sets and somewhat 
lower (1.76) for thé third set. This lower value is very likely due to insufficient 
sampling. The parameter, a, is useful as it can be used to predict the number of 
unique structures GrowMol can generate for a given size molecule. For example, 
there should be approximately one billion unique structures containing 30 atoms! 

An additional set of molecules with 25 to 35 atoms was also generated in 
order to investigate features of large molecules. 7000 structures were generated; 
of these 4706 were unique. 

Results 

A set of 22,000 structures with an average size of 18.7 atoms was evaluated. The 
results are summarized in Table II. The entire analysis resulted with 308 structures 
which were inspected visually at the graphics terminal. These structures were 
classified in a number of different ways: the way in which the backbone chain 
extends thorough the binding site; the type of functional group occupying a 
specific area of the binding site; structures which have a constant feature, e.g. a 
phenyl group in the ST pocket. In addition, the structures were compared to 
known inhibitors to provide an experimental validation of the method. 

Figure 1 gives examples of some of the different binding modes exhibited by 
the GrowMol structures. The ellipses represent hydrophobic groups, e.g. branched 
alkane chains, cyclohexane or benzene rings. The dotted lines show hydrogen 
bonding to enzyme residues. The first example shows the binding mode proposed 
for the substrate. Most known inhibitors are based on this binding mode. These 
examples represent only a fraction of the total number of different binding modes 
found in this study. 

Figure 2 shows examples of novel ways in which the ST and S2' binding 
pockets of thermolysin can be occupied. Structures A- l through A-3 occupy the 
ST pocket; structures Bl to B-3 occupy the S2' pocket; and the last structures are 
macrocycles which bridge the two pockets. These examples show the ability of the 
de novo growth algorithm to generate conformationally restricted structures which 
are chemically complementary and fill the complex volume of the binding site. 

To assess the ability of GrowMol combined with the evaluation procedure to 
produce potent inhibitors, the reported thiol inhibitors of thermolysin were 
compared to structures generated by GrowMol. A literature search revealed 
fourteen thiol thermolysin inhibitors. Six of these compounds are alpha thiols. At 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
00

6

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



92 COMPUTER-AIDED MOLECULAR DESIGN 

Figure 1. Examples of different ways in which the backbone of grown 
structures extend through the ST and S2' sub sites of thermolysin. The 
ellipses represent hydrophobic groups. The dotted lines show hydrogen 
bonding to enzyme residues. The first example shows the binding mode 
proposed for the substrate. Most known inhibitors are based on this binding 
mode. The remaining examples show binding motifs which differ appreciably 
from this mode and provide novel solutions to the hydrogen-bonding 
requirements of the enzyme. (Reproduced with permission from réf. 1. 
Copyright 1994 American Chemical Society) 
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present no experimental data is available concerning the binding mode of alpha 
thiols to the zinc ion in thermolysin. It has been postulated that alpha thiols bind to 
thermolysin in a bidendate fashion (25). The structures generated by GrowMol in 
the present application can only bind in a monodendate manner, and, therefore, the 
published alpha thiols cannot be used as a comparison. The (S) isomer of retro-
thiorphan has a Ki of 94 uM, and was, therefore, also excluded. This left seven 
inhibitors. We added an eighth compound to the list, a potent benzofused 
macromolecule, CGS 26670 (Ksander, G.; Bohacek, R. S.; de Jesus, R.; Yuan, Α.; 
Sakane, Y.; Berry, C ; Ghai, R.; Trapani, A. J.; manuscript in preparation). Table 
IV shows a comparison between these compounds and similar structures generated 
by GrowMol. Table IV also gives the experimental and estimated potencies for the 
structures. 

GrowMol generated structures identical to both (S) and (R) thiorphan. In 
addition GrowMol generated structures similar to five of the six remaining known 
inhibitors. The inhibitor which was not found is not very potent (experimental Ki 
of 52μπι). It forms few interactions with the enzyme and, therefore, it is not 
surprising that no structure similar to this inhibitor was generated. 

The estimated potencies are all within approximately one order of magnitude 
of the experimentally determined Ki s. 

Conclusions 

A combinatorial, de novo growth algorithm has proved to be a useful tool for 
exploring the diversity of potential ligands to an enzyme binding site. 

When applied to the thermolysin binding site a large number of diverse 
structures with steric and chemical complementarity were found. Molecules 
identical to and similar to known inhibitors were found in the set of computer 
generated structures. 

The large size of the resulting sets of molecules could be considered a 
liability, however, we believe that the ability to reveal such a large set of diverse 
structures makes the method very powerful. Large data-bases of complementary 
structures can be created and then searched to reveal structures with various 
desired properties. We have also found that using molecular mechanics energies 
and clustering of similar structures, it is possible to identify a relatively small set of 
highly diverse structures having properties believed to lead to good binding. 

The present version of GrowMol does have limitations. In its present form, 
GrowMol limits the number of structures that can be generated by fixing the bond 
lengths, bond angles and dihedral angles to ideal values corresponding to the 
rotational isomeric states of each torsion bond. The small number of atoms and 
functional groups in the current library is another limitation. Refinements are 
presently under way which will remove these limitations. 

In conclusion, the de novo growth program we have developed is currendy 
able to provide medicinal chemists with a list of novel structures which are highly 
complementary to a known binding site. With further refinement in methods for 
potency prediction and structure generation, it is expected that in the future this list 
will contain nearly all the structures which can bind with high affinity to a known 
conformation of the site. 
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Chapter 7 

Computer-Aided Design of New Drugs Based 
on Retrometabolic Concepts 

Nicholas Bodor and Ming-Ju Huang 

Center for Drug Discovery, University of Florida, P.O. Box 100497, 
Health Science Center, Gainesville, FL 32610-0497 

Traditional methods of drug design have relied on maximization 
of drug activity, which, however, often produce highly potent 
derivatives with equally elevated toxicities, resulting in no change 
in the therapeutic index. Inclusion of metabolic and toxicological 
considerations in the drug design process is embodied in 
retrometabolic concepts. This systemic methodology employs 
several rules for design of safe drugs, either by metabolic 
activation (chemical delivery systems) or strategic enzymatic 
deactivation processes (soft drugs). Automation of these drug 
design processes was accomplished by artificial intelligence-based 
computer programs. Thus, new structures are generated from any 
lead compound, using the "soft analog" and the "inactive 
metabolite" approach strategies. All structures are 
conformationally optimized. Then they are ranked based on 
calculated properties: solubility and partition characteristics, 
isosteric-isoelectronic comparison to the lead, and estimated 
metabolic rates of the predicted enzymatic degradation. 

The main objective of drug design is to develop drugs on as rational a basis as 
possible and to reduce the trial-and-error factor in this process to the absolute 
minimum. In the classical drug design process, one starts with a lead compound, 
which is a well-defined structure having known biological action. The objective 
then is to modulate the biological action-activity, assuming that structure-activity 
relationships (SAR) exist. Accordingly, random and then some systematic 
modifications of the structure will allow one to learn as much as possible about 
the structure-activity relationships which then will lead to maximization of the 
drug action. Most of the time, in this way one can generate new compounds with 
increased activity. However, in most cases the ratio of the activity to undesired 
side-effects (toxicity), that is, the drug therapeutic index does not change. There 
are many reasons for this. Most of the time it is because the side effects are 

(X)97-^156/95A)589-0098$12.()0A) 
© 1995 American Chemical Society 
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7. BODOR & HUANG Computer-Aided Design of New Drugs 99 

related to the intrinsic receptor affinity responsible for the desired activity and that 
the drug pharmacodynamic and pharmacokinetic properties will change 
parallel to the activity changes. On the other hand, when introduced in the body, 
drugs will undergo multiple enzymatic conversion (metabolism), as the body is 
trying to get rid of these foreign chemicals. However, many of these metabolic 
conversions will lead to modified compounds, still closely related to the drug, 
which can have enhanced or a different type of biological activity, or which could 
be quite toxic (epoxides, radicals, etc.). Most drugs will generate multiple 
metabolites which can affect drug action and toxicity, even if the drug, that is, the 
new drug, has better receptor binding or other desired properties. The bottom line 
is that most of the time the therapeutic index does not improve. 

A l l data accumulated on the metabolic activation-toxication and/or 
deactivation of drugs and biologically active chemicals clearly indicate the 
necessity of including metabolic considerations in the general drug design process. 
That is, radier than waiting on studies on the drug metabolism after selection of 
die best drug candidate, structure-activity relationships (SAR) should be combined 
from die beginning with structure-metabolism relationships (SMR) throughout the 
drug design process. The combination of SAR and SMR is incorporated into the 
retrometabolic drue design (RMDD) concent. If one considers a drug (D) as the 
lead compound, then the retrometabolic drug design could cover two directions. 
In one case the drug is convened chemically into an inactive form by covalendy 
attaching to it bioremovable moieties, of two general types. The more important 
one is called targetor (T), while the others are modifiers (F), which will optimize 
physico-chemical properties of the molecule. A l l these combinations lead to a 
molecule which we can call a chemical delivery system (CDS), which by design 
will sequentially undergo metabolic conversions, removing the modifiers after die 
targetor fulfills its site- or organ-targeting role. That is, the CDS by designed 
metabolic conversion will be activated to the desired drug at the site of action. 
This forms one pan or one side of the retrometabolic drug design loop, as shown 
in Fig. 1. 

enzymatic conversions 

Fig. 1. The retrometabolic drug design loop. 
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100 COMPUTER-AIDED MOLECULAR DESIGN 

On the other side of the loop are newly designed drugs with desired 
intrinsic activity. However, these are drugs of a special kind. These so-called 
"soft drugs" are designed in such a way that they will be metabolized in a 
predictable and controllable way to an inactive metabolite (M,) after they achieve 
their therapeutic role. As shown on the right side of the retrometabolic loop, the 
soft drug (SD) is isosteric and/or isoelectronic, with the drug, but it will be 
metabolized in one step to an inactive metabolite (H), which in general is one of 
the inactive metabolites of the drug as well. The design of the soft drug takes 
place with well-defined strategic modifications involving the drug metabolism. 
It is evident that the two classes of compounds involving the retrometabolic 
design, that is, CDS and SD, are opposite to each other. While the CDS is 
inactive and metabolicallv activated via a designed route to the drug, the SD is 
active itself, which then is metabolicallv deactivated via a designed route. 

The concept of soft drugs in the present sense was introduced in 1980 (/-
3), and in a relatively short time a number of different classes of soft drugs were 
identified, which were classified (4,5) in five distinct groups as follows: 
1) Soft Analogs 
2) Activated Soft Compounds 
3) Active Metabolite Based Drugs 
4) Controlled Release Endogenous Agents 
5) The Inactive Metabolite Approach 

Examples for practical use of each of these classes were provided in the 
literature (6-13), but since the early 1980's the two classes which have emerged 
as die most important ones are the soft analogs and the inactive metabolite 
approach. Common to these two and actually all soft drug classes is the fact that 
the soft drug after being delivered to perform its therapeutic role is metabolized 
singularly to one inactive metabolite. This inactive metabolite can undergo further 
modifications, but, from the point of view of activity-toxicity, this is irrelevant. 

The Inactive Metabolite Approach 

The working hypothesis and strategies to be used in developing new drugs based 
on the inactive metabolite approach are as follows: 

1) The design process starts with a known inactive metabolite of a drug that 
is used as the lead compound. 

2) The new soft drug structures are designed from this inactive metabolite by 
performing chemical modifications to obtain structures that resemble 
(isosterically and/or isoelectronically) the drug from which the lead 
inactive metabolite was derived. This is the activation stage. 

3) The new structure of the soft analog is designed in such a way that its 
metabolism will yield the starting inactive metabolite in one step and 
without going through toxic intermediates (predictable metabolism). 

4) The transport and binding properties, as well as the rate of metabolism and 
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7. BODOR & HUANG Computer-Aided Design of New Drugs 101 

pharmacokinetics of the soft drug, are controlled by molecular 
manipulations in the first activation stage (controllable metabolism). 
Some additional considerations are the following: 

If a useful inactive metabolite of a drug is not known, based on our current 
knowledge of drug metabolism, inactive metabolites can be predicted. Second, 
there are two major classes of soft analogs based on inactive metabolites. In one 
class, where the inactive metabolite formation involves the pharmacophore, 
generally the requirements for isosteric-isoelectronic analogs are much more 
restricted. The new structures have to be very close analogs of the lead 
compound. On die other hand, if the inactive metabolite is formed by enzymatic 
modification of a pan of the molecule which is not involved in the activity, 
generally there is more freedom in modifying this kind of inactive metabolite in 
the activation stage. 

The soft drug, like the lead compound or its active metabolites have good 
affinity to the receptor and will trigger the desired pharmacological action at the 
site(s) it has reached. The inactive metabolite by definition is void of receptor 
binding activity. 

The soft drug, whose activity is similar to that of the lead drug, has, 
however, a distinct property of being converted to the inactive metabolite in a 
separate, independent process (not related to die active site). In die general soft 
drug design process, one of the basic principles involves avoiding oxidative 
metabolism as much as possible and basing the deactivation on hydrolytic 
enzymes, such as non-specific esterases, in order to achieve the predictable, 
controllable, and directed drug metabolism. The inactive metabolite which is used 
in the drug design process, is, on the other hand, normally produced by oxidative 
metabolism in the body, when the lead drug is administered. 

One good example is provided by corticosteroids. A typical corticosteroid, 
such as hydrocortisone Q), undergoes generally multiple metabolic conversion, as 
illustrated in the following figure. 

Fig. 2. The major routes of metabolism of hydrocortisone. 
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102 COMPUTER-AIDED MOLECULAR DESIGN 

Enzymatic conversions of rings A or B, of the 11-hydroxy function, and 
the degradation of the dihydroxy acetone side chain, all take place. These are all 
oxidative or reductive conversions, which generally occur very easily if the 
compound, that is, the natural corticosteroid, is present in normal physiological 
concentrations. If, however, the concentrations are higher and/or if analogs which 
do not metabolize easily are introduced, the activity-toxicity profile changes 
substantially. Significant side effects, most of which are related to the ubiquitous 
corticosteroid receptors, will be present and sometimes prohibit use of even 
therapeutic doses of these steroids. The oxidation of the dihydroxy acetone side 
chain (process V) takes place step-wise, first the 20-keto-21 aldehyde, then the 20 
keto-21-oic acid is formed, and finally the cortienic acid (2), in which the C-21 
carbon is not present anymore. This is a common, inactive metabolite found in 
human urine after administration of corticosteroids. It is thus an ideal lead 
compound for applying the inactive metabolite approach. Modification of the 17-
β-carboxyl function, in addition to the modifiers introduced in the 17-oc and the 
usual substituents in 6,9 and 16 positions of the steroid ring, will lead to a host 
of more or less active analogs (3) of the basic corticosteroid. The activity will 
depend on the specific functions, but they should all have one common property, 
that is, hydrolysis of the 17-|$-carboxylate to the corresponding substituted 
cortienic acid leading to inactivation. As shown from receptor binding studies 
(14), all substituted cortienic derivatives (4) have essentially zero binding to 
glucocorticoid receptors. On the other hand, the strategic modifications of the 
ester function and appropriate substitution of other positions as represented by 3 
can lead to extremely potent corticosteroids, as indicated in Table I. 

C 0 2 R CO2H 

Y Y 
inactive metabolite 

Ο 

conjugation and elimination 
\ 

conjugation and elimination 

Y 1 R = alkyl, haloalkyl, etc. 
R' = alkyl, alkoxyalkyl, COOR, etc. 
X , Y = H o r F 
Z = Hor<x-orp-CH 3 

Δ 1 - present or absent 
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Table I. Binding of Selected Soft Glucocorticoids to the Glucocorticoid 
Receptor of Rat Lung 

Compound 2. Rl R2 Xl X2 X3 RBA a 

a 01-CH3 Cl H $61) 
b n-C3H7 a-CH3 Cl F H 870 
c a-CH 3 

Cl F H 840 
d 1-C3H7 P-CH3 

-CH-C1C 

1 H F 11 P-CH3 

CH 3 

c C2H5 (X-CH3 CH2CI F H 19 
f C2H5 a-CH3 Cl F H 740 

g b C2H5 a-CH3 Cl F H 16 
h i-C3H7 a-CH 3 

Cl F F 1,100 
i n-C3H7 (X-CH3 Cl F F 1,000 

j n-C3H7 (X-CH3 Cl H F 1,000 
k CH3 a-CH 3 

Cl H F 1,200 
1 CH3 P-CH3 

Cl F H 990 
m n-C3H7 β-0Ή3 Cl F H 1,460 
η 1-C3H7 a-CH3 F F H 820 
0 n-C3H7 a-CH3 F F H 990 

Ρ C2H5 H F H H 200 
Γ i - C 3 H 7 H F H H 70 
s C2H5 a-CH3 Cl F F 2,100 
t CH3 H α H H 180 
u C2H5 H Cl H H 490 
V n-C3H7 H Cl H H 540 
w H3 P-CH3 

Cl H H 3 
ζ H3 a-CH3 Cl F H 7 

a RBA dcxamcthasone - 100· 
b 11-keto. 
c Note branching: 
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One of the compounds, the one derived from unsubstituted prednisolone, 
which has a unique 17-cc-ethyl carbonate function together with the chloromethyl 
ester in the 17-β position, was selected for development. This compound, 
loteprednol etabonate (3u), shows a good glucocorticoid receptor-binding activity 
of around 500 as compared to dexamethasone having 100, while its hydrolytic 
cleavage to the corresponding cortienic acid 17-a etabonate shows again no 
activity whatsoever. However, while the activity shown on the receptor binding 
is transformed into significant in vivo activity when applied topically, both as a 
dermatological agent or as an ophthalmic anti-inflammatory agent, or even to 
control allergic reactions by inhalation, while the typical corticosteroid side effects 
are significandy and dramatically reduced. The molecule is essentially 
metabolized during absorption, and thus no free active corticosteroid can reach the 
systemic receptors, including the ones in the thymus, and so it does not produce 
thymolysis, adrenal-and-immunosuppression. In animal studies, the therapeutic 
index of L E (3u) was found to be 24 as compared to 1 for betamethasone valerate, 
(clobetabol-17-a-propionate (1.5) or hydrocortisone 17-a-butyrate (1.3)). Human 
vasoconstrictor activity and topical anti-inflammatory activity in a variety of 
ophthalmic inflammatory diseases confirmed L E to be a very useful therapeutic 
agent, lacking however, the important side effects observed in humans, such as the 
extremely restrictive one of elevating intraocular pressure, that causes glaucoma. 

Calculation at the A M I level of the optimal conformers of various known 
active steroids, as compared to Loteprednol Etabonate, confirmed that the activity 
is associated primarily within the exposed 21-hetero atom, which in general is an 
oxygen (OH in hydrocortisone) or a CI in clobetasol, while the "pseudo" 21-atom 
in L E is also CI. Analogous esters which do not have this heteroatom placed in 
the right position, do not show any significant activity. Thus, this class of soft 
drug belongs to the first group, where the inactive metabolite essentially destroys 
the important component in the pharmacophore, which then has to be rebuilt in 
the way shown above, to get the soft drug. 

Developing a soft β-blocker (7) starting from the well-known β-adrenergic 
antagonists metaprolol (6) and atenolol (7) involves a common inactive metabolite, 
again a carboxylic acid type, however, which is formed by oxidation of a part of 
the molecule which is not involved with the pharmacophore. The corresponding 
phenylaclic acid derivative (8), an isolated inactive metabolite, can be reactivated 
to soft β-blockers (9) using a wide variety of alcohols, which ultimately will affect 
the molecular lipophilicity and the rate of cleavage to the inactive metabolite. 
Here, we have much more freedom to modify the molecule without affecting the 
intrinsic activity too much. What is affected are the distributional and binding 
properties. 

Accordingly, one of the lipophilic ester analogs, the adamantane ethyl 
derivative (9b), is being developed as an ophthalmic antiglaucoma antagonist, due 
to its enhanced lipophilicity, which, however, does not prevent the compound from 
being deactivated to the very inactive metabolite (8) during absorption through the 
gastrointestinal mucosa. 
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There are numerous practical examples, which were developed through the 
years based on empirical rules, and which can very easily be generalized and 
applied to essentially any drug class. In addition, the well-defined rules involved 
in designing soft analogs can also be described in general terms. According to 
this, a soft analog can be designed in the following way: 

1) A metabolically, preferentially hydrolytically, sensitive part is to be 
built into the lead molecule. 

2) The new, soft analog is a close structural analog. 

3) This metabolically weak spot is located in the molecule in such a 
way that overall physical, physicochemical, steric, and 
complementary properties of the soft analog are very close to those 
of the lead compound. 

4) The built-in metabolism is the major, or preferentially the only, 
metabolic route for deactivation of the drug. 

5) The rate of predictable metabolism can be controlled by structural 
modifications. 

6) The products resulting from the metabolism are nontoxic and have 
no significant biological activity. 

7) The predicted metabolism does not require enzymatic processes 
leading to highly reactive intermediates. 

The combined rules involving soft analog design and the inactive 
metabolite approach were the basis for developing an expert computer program, 
which is general in nature and can be used for designing soft drugs starting with 
essentially any lead compound. Accordingly, the flow chart of the soft drug 
design, as part of the overall retrometabolic drug design approach, is shown below 
(Fig 3). 

As shown on the flow chart, the computer program contains numerous 
specific transformation rules based on the soft drug concept, for example 
generating common oxidative metabolites by oxidations of methyl function, 
oxidation of hydroxymethyl function, or β-oxidation of various alkyl chains. 
Accordingly, corresponding carboxylic acid type metabolites are generated by the 
computer and then converted into various esters and reversed esters. The 
computer will perform the - C H 3 or -CH 2 OH -» -COOH -> -COOR 
transformations. 
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start 

collect information about 
lead compound and draw 
3D structure 

select the transformations \ 

choose ranking range 

display 3D metabolites 
and select metabolites 
for further study 

display 3D soft drugs 
and select soft drugs for 
further study 

run AMI, LogP, and LogW 
for lead, selected soft drugs, 
and selected metabolites 

write the results | 

Fig. 3. Flow chart of the soft drug design. 
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108 COMPUTER-AIDED MOLECULAR DESIGN 

There are a number of other ways to produce soft analogs: by strategic 
replacement, for example, of neighboring methylene groups by -O-CO or -CO-O-
functions or other metabolically sensitive groups like thioesters or amides. In this 
example, we consider only the simple esters and perform the modifications 
exhaustively. That is, all possible modifications will be performed by the 
computer. Following the chosen transformations, the acidic metabolites and soft 
drugs are automatically generated. The three-dimensional structures of acidic 
metabolites and soft drugs are displayed on the screen and selected ones are 
chosen. A M I , LogP, and LogW calculations are run for the chosen compounds. 
Based on the overall order of closeness of combined calculated properties of soft 
drugs to those of the lead compound, the soft drugs are ranked and the ranking is 
displayed in a table. The use of this program can be exemplified as follows. 
Prostaglandins undergo facile oxidative metabolism at the various molecular sites 
(Fig 4). 

β-Oxidation 

HO 1 

Fig. 4. General metabolism of prostaglandins in humans 

Many times the metabolism of prostaglandins is too fast or too slow to 
produce selectively the desired activity. But most of the transformations are 
oxidative. By replacing them with hydrolytic processes, the activity could be 
better controlled and targeting could be achieved. In this particular case, starting 
from PGE,, this exercise will lead to sixteen different soft drug analogs. 
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COOH 
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PGEl-8 PGE1-9 
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110 COMPUTER-AIDED MOLECULAR DESIGN 

These structures are distinctly different, but they have to be differentiated 
somehow quantitatively, as one certainly would not want to synthesize and test all 
of them. Accordingly, specific selection rules need to be introduced. The basic 
rules should be related to the closeness of die isosteric-isoelectronic, transport, 
and/or binding (and, ultimately, rate of metabolism) properties of the new drugs. 

In order to be able to compare some of these properties, new methods of 
estimating lipo- and hydrophilicity (as expressed by the partition coefficients and 
aqueous solubilities) were developed (76-79), based on correlations between 
molecular descriptors calculated by quantum chemical semi-empirical methods, 
such as AMI. In this way the optimized structures (isomers) can be effectively 
compared, and the important properties which enter into consideration involve, 
besides the lipophilicity properties, the molecular volume, molecular surface area, 
molecular ovality (the ratio between the actual and minimum, that is, spheric 
surface), dipole moment, etc. The calculated properties are summarized in the 
following Table II: 

Table II. The Calculated Properties of PGE1 and Its Sixteen Different Soft 
Drug Analogs. 

cpds LogP LogW Volume Surface Ovality Dipole 

Pgel 4.231 2.732 361.01 468.02 1.909 3.902 

pgel-1 3.290 5.283 354.92 460.71 1.900 2.403 

pgcl-2 3.026 6.410 355.07 459.24 1.894 4.875 

pgel-3 2.695 5.879 354.21 450.19 1.860 2.126 

pgel-4 3.093 5.903 355.13 460.35 1.898 4.809 

pgel-5 2.909 5.472 355.15 458.12 1.889 4.416 

pgel-6 3.169 6.118 355.09 459.40 1.894 2.952 

pgel-7 2.994 3.455 355.05 459.24 1.894 3.078 

pgel-8 2.867 6.458 355.03 457.50 1.887 5.215 

pgel-9 2.771 5.111 354.46 451.58 1.864 1.512 

pgel-10 2.800 4.177 354.70 458.16 1.891 4.909 

pgel-11 2.832 7.981 354.59 455.96 1.882 5.474 

pgel-12 3.105 6.528 354.90 459.22 1.894 4.053 

pgel-13 3.050 6.489 355.06 458.35 1.890 3.629 

pgel-14 3.029 6.070 355.04 458.60 1.891 4.230 

pgel-15 3.027 6.606 354.90 458.01 1.889 4.006 

pgel-16 3.033 6.538 355.05 458.03 1.889 3.805 
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As one can see, the partition coefficient, that is, the Log P, varies between 
2.7 and 4.2, a 1.5 log-unit spread. The dipole varies between 1.5 and 5.5, again, 
a very significant difference. The dipole, and generally the charge distribution, 
should also affect binding properties of the molecule. The other calculated 
properties also reflect the molecular variability, although most of these are exact 
isomers. In the final step, the combined closeness of properties to the lead 
compound is considered, and the next figure shows the order obtained, while the 
structures of the closest analogs are depicted. The second most preferred 
compound, structure PGE 1-6, is identical to a compound recently patented (20). 

Overall order of closeness of combined calculated properties of soft 
drugs to those of the lead compound, based on equally weighted 
contributions of LogP, LogW, volume, surface and dipole. 

pgel-4 

pgel-6 

pgel-1 

Pgcl-7 
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pgel-10 

Pgel-» 

Pgel-9 
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112 COMPUTER-AIDED MOLECULAR DESIGN 

One of the final selections involves the ease with which the soft drugs will 
be converted to the inactive metabolite. Depending on the specific use, this needs 
to be sometimes faster, sometimes slower. Depending on the class of drugs and 
spécifie use, the user is going to require certain properties from the soft drugs. 
A method of determining or estimating the rate of hydrolytic cleavage of the 
various ester-type soft drugs was developed, using a pattern-recognition technique 
involving the partial volumes around the ester functions of various known 
compounds. 

The usefulness of the retrometabolic drug design concept was demonstrated 
in practice by developing a number of new drug candidates. Some of them are 
in the final stages of clinical development. For example the inactive metabolite 
based Loteprednol Etabonate (LE, 3u in Table 1) is currendy completing Phase 
ΙΠ clinical trial program in the US, for the treatment of ophthalmic inflammations 
and allergies. LE was found to be efficacious and to have a superior safety profile 
based (27) on the low incidence of observed side effects, (most noteworthly, 
essential lack of elevation of intraocular pressure which normally occurs in 15-25 
precent of the patients) as compared to current ophthalmic steroid treatments. 
Some 740 patients with giant papilary conjunctivitis (GPC) and seasonal allergic 
conjunctivitis (SAC) were studied at 46 sites. LE is currendy being developed for 
other uses, like asthma, dermatitis and inflammatory GI conditions. 

Other soft drugs in clinical development include the soft β-blocker 
Adaprolol Maleate (9b) and the soft anticholinergic tematropium methyl sulfate 
(72). 

These are general concepts, and the availability of an expert computer 
program which can be applied to various other classes of drugs will make the use 
of the concept much easier. The program is open to additions and modifications. 
Specific transformations can be added, the underlying semi-empirical method used 
to calculate molecular properties can be replaced, and the methods used to 
calculate molecular properties can also be upgraded. 

Finally, the program and the general concepts can be extended to other 
classes of important organic chemicals, like pesticides, agrochemicals, etc. 
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Chapter 8 

Molecular Mechanics and Dynamics Studies 
on Amide-Modified Backbones in Antisense 

Oligodeoxynucleotides 

R. M . Wolf, V. Fritsch, A. De Mesmaeker, J. Lebreton, and A. Waldner 

Central Research Laboratories, Ciba-Geigy Ltd., 4002 Basel, Switzerland 

Replacing one or several phosphodiester linkages -O-PO 2

--O-CH 2- in 
oligodeoxynucleotides by five structural isomers of an amide bond 
-NH-CO and two -CH 2 - groups yields antisense oligonucleotides that 
retain the ability to form duplexes with complementary mRNA. 
Molecular mechanics and dynamics simulations reveal that the modified 
sequences can assume various conformations which allow for standard 
Watson-Crick base pairing with a complementary RNA strand without 
major strain or steric hindrance. The overall structural features and 
dynamical behavior of the modified R N A D N A hybrid duplexes are 
comparable although not identical to those of the wild-type RNA- DNA 
duplexes. 

Antisense oligonucleotides represent a new class of potential therapeutical drugs. Their 
action is based on the repression of a defined protein by blocking specifically a portion 
of the corresponding mRNA (7-3). To be used as antisense agents, modified synthetic 
oligo(deoxy)nucleotides must retain the specificity towards complementary /wRNA 
(given by the base sequence) and should have similar or higher binding constants with 
/wRNA as compared to their wild-type analogues. Furthermore, they should be stable 
against degradation by nucleases and they should have an increased cell permeability 
with respect to natural oligonucleotides. Among the various possible modifications of 
natural oligonucleotides, backbone-modified nucleic acids look the most promising 
(4-6). Various approaches may be used to substitute the phosphodiester backbone which 
is exposed to the attack by nucleases. However, in order to allow for sequence-specific 
duplex formation with complementary RNA, the modified backbone must be able to 
adopt conformations which orient the bases in the best possible way for Watson-Crick 
base pairing. Although not necessarily required, this may be achieved most easily by 
keeping the number of bonds in the backbone as well as towards the nitrogen of the 
bases the same as in natural DNA, i.e., six bonds in the backbone and three bonds to 
the base nitrogen. Even for drastic changes in the backbone, like for example in 

0097-6156/95/0589-0114$12.00A) 
© 1995 American Chemical Society 
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8. WOLF ET AL. Amide-Modified Backbones 115 

"peptide nucleic acids" (PNAs) in which the sugar portion is also substituted, the 
numbers of bonds are respected (7). 

The amide backbone modifications (see Figure 1) analyzed by molecular mechanics 
and dynamics in the scope of this work keep the sugar portions completely unaltered. 
Thus the modified backbone segment must be able to fold into a conformation which 
either resembles that of the natural phosphodiester or at least which leaves the 
orientation of the furanoses (and hence of the bases) essentially unchanged. 

The structures shown in Figure 1 were found to satisfy various criteria in order to 
be used in antisense compounds (8-14). Details about synthesis and experimental data 
are published elsewhere (9-14). Melting points Tm of duplexes with complementary 
R N A were obtained for different sequences with various numbers of substituted 
phosphate linkages (see Table I). 

Table I. Melting point differences between RNA* DNA duplexes with amide-
modified DNA strands and the corresponding wild-type RNA- DNA hybrid 

duplexes. Average values over various sequences. 

modification amide 1 amide 2 amide 3 amide 4 amide 5 

ATm P e r 

modification (°C) -2.8 -1.6 +0.4 0.0 -3.5 

Amide modifications 3 and 4 have the highest Tm values (superior to the correspond
ing wild-type RNA- DNA hybrid duplexes in some cases). The other three amide 
modifications increasingly destabilize the duplexes in the order amide 2, 1, and 5. 
Although the experimental data clearly show differences between the various backbone 
modifications, these differences are not as spectacular as anticipated. Above all, an 
interesting similarity in the Tm values was observed between those amide modifications 
which can be regarded as isomers of the same trans double bond, namely amides 1 and 
5, and amides 3 and 4, respectively. Without further proof, this may be taken as a first 
hint that the actual geometry of backbone modifications might be more relevant than 
the detailed electrostatics. The latter clearly change when reversing the orientation of 
the amide group, as is the case when passing from amide 1 to amide 5 or from amide 
3 to amide 4. Also, it turns out that modifications directiy connected to one of the 
sugars (amide modifications 1, 2, and 5) have a negative influence on the stability of 
the duplexes formed with complementary RNA. 

In order to understand in more detail the structural features of the various amide 
backbone modifications, molecular mechanics (MM) and molecular dynamics (MD) 
studies were undertaken. 
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116 COMPUTER-AIDED MOLECULAR DESIGN 

Computational Methods 

M M and M D simulations were carried out with the A M B E R all-atom force field (75) 

"total = Σ 4[l - + Σ 4& - θ ο ΐ 2 

bonds angles 

Σ - ^ H +οο8(Μφ-φ 0)] + 

torsions 

Ν Ν 

Σ Σ % 
i=l j>i 

ί Μ2 ( \6 

\ i j J J 

Ν Ν 

Σ Σ 
ι=1 j>i 

332 δ, δ , 
+ Σ 
Η-bonds 

_ Dij 
+ Σ 
Η-bonds 

12 
/υ 

10 

(1) 

as incorporated in the software package Insightll 2.2.0/Discover 2.9 from BIOSYM 
Technologies, San Diego, USA. 

Electrostatic energy contributions were evaluated by using partial charges and 
applying Coulomb's law. Partial charges were assigned by an acceptor-donor scheme 
which reproduces as closely as possible the original A M B E R charges (75) in the 
unmodified portions of the structures (unpublished work by Thacher, T., BIOSYM 
Technologies, San Diego). The permittivity was adjusted by a distance-dependent 
dielectric function ε = 4 τ - , where is the distance separating two charges δ, and δ .̂ 
The use of a distance-dependent dielectric function was found appropriate to account 
for the absence of explicit solvent molecules and counterions (16-18). Specific 1-4 
nonbonded interaction energy terms were reduced to 50% (79). No cut-offs were used. 

Conformational Analysis. For the conformational analysis, starting structures were 
generated from an initial Α-form RNA- DNA octamer duplex r(GA 6 G)- d(CT 6C) (see 
Figure 2) by making the appropriate changes to introduce the desired backbone 
modification between the middle residues in the DNA strand. Note that "A-form" in this 
respect refers to the helical parameters, the backbone conformation, and the sugar 
puckering, i.e., all furanose units were initially in C3'-endo puckering mode. Obviously 
however, the sugars were free to adopt any energetically accessible puckering mode in 
subsequent M D simulations. Different conformers were generated by enforcing chosen 
backbone torsion angles incrementally by 30°, followed by a complete relaxation by 
conjugate gradient until the maximum derivative was < 0.1 kcal-mol^-Â' 1 . The 
enforcement of a torsion angle φ to a predefined value tycstr was performed by applying 
an additional harmonic energy term Ecstr of the form 

Ecstr = kcstr (Φ "Φ^ίΡ (2) 

where the force constant kcstr was set to 1000 kcal-mol"A-rad" . This procedure 
allows a scan through conformational space without an actual disruption of the duplex. 
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C 4 ' -
I 
wild-type 

C 3 ' -
/ 

Η—Ν 
\ 
c=o 

/ 

C H , 

r 
amide 1 

/ 
C 3 ' -

C H 2 

Η—Ν 
\ 
C = 0 

/ 
C 4 ' -

amide 2 

C 3 ' - C 3 ' - C 3 ' -
/ / / 

H 2 C 0 = C 
\ 

c=o N - H Ν—Η 
/ / / 

Η—Ν o=c H 2 C 
\ \ 2 \ 
C H 2 C H , 

C 4 ' -

CH, 
/ 2 

C 4 ' -
C H , 

C 4 ' - C4'~ 

amide 3 amide 4 amide 5 

Figure 1. Amide-modified backbones replacing the wild-type phospho
diester (top left) in antisense oligofdeoxynucleotides. 

r 5 ' 7 ^ p T p T p T p T p T p T p 7 ~ y 

G A A A A A A G 
C Τ Τ [Τ ; j l T T C , 

d3'-^p^p^pt2^p- J-p- J"p" L-" 5' 

octamer for 
conformational 
analysis 

r 5 L 7 T p T p T p T p T p T p T p T p T p T p T p T p T p 7 ~ 3 ' 
G A A A A A A A A A A A A G 
C T T T T T T T T T T T T Ç ! , 

d 3 , ^ p ^ p ^ * ^ p ^ * ^ p ^ * ^ p ^ * - ^ p J - * - L p - i - p - i : - 5 ' 
I4mer for molecular dynamics 

Figure 2. Structures used for conformational analysis (top) and molecular 
dynamics (bottom). * designates the replacement of a phosphodiester 
linkage by an amide modification. 
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118 COMPUTER-AIDED MOLECULAR DESIGN 

Although the method cannot ensure the finding of all possible local minima, it yields 
a representative range of low-energy conformers to be considered further. 

Torsion angles around bonds directly connected to one of the sugar rings, i.e., either 
to C3 ' in the case of residue i or to C4' for residue M in Figure 3, were not enforced. 
The enforced torsion angles for the amide modifications were α and β for amides 1 and 
5, ζ and α for amide 2, ζ and β for amides 3 and 4 (see Figure 3 and reference (20) 
for definitions). Note that the amide bond was always preset to either trans (180°) or 
cis (0°) and then let free to relax, i.e. deviating moderately from the planar structure. 
Although the cis amide is energetically less favorable in the isolated form, its 
occurrence was not excluded a priori in die modified duplex structures. 

Molecular Dynamics. The various local-energy-minimum conformers found during the 
conformational analysis were used as starting geometries for the M D runs, which were 
carried out on alternatingly modified R N A - D N A \4mer duplex structures 
r(GA 1 2G)-d(CT(T*T) 5TC), where * designates a specific amide-modified linkage in a 
defined starting conformation (Figure 2). The alternatingly modified structures were 
chosen for simulations because of the experimental feasibility of such backbones, for 
which modified dimers can be connected by standard nucleotide oligomerization 
techniques (27). 

Prior to molecular dynamics, the structures were completely minimized. M D 
simulations were then run in the NVT ensemble, keeping the temperature constant at 
300 Κ by coupling to an external heat bath (22). One-femtosecond time steps were used 
for the numerical integration. The system was preconditioned by heating stepwise from 
0 to 300 Κ over a period of 24 picoseconds: 2 ps at 50 Κ and 100 K, 4 ps at 150 Κ and 
200 K, 5 ps at 250 K, 7 ps at 300 K. Trajectories were then recorded for 100 ps. 
Instantaneous coordinates were saved every 0.5 ps for subsequent analysis. 

Results and Discussion 

Conformational Analysis. For each of the backbone modifications various local 
minima on the potential energy surface were found, sometimes differing only 
marginally in energy. Lowest-energy conformations for the different backbone-modified 
structures are shown in Figures 4 to 6. These figures represent the T*T sequence cut 
out of the octamer duplex without the base atoms. For amide 3 (Figure 5) and amide 
4 (Figure 6) are depicted the three lowest-energy structures. Torsion angles for local-
energy-minimum geometries are not listed explicitly here (see references (9-75) for 
more details). During subsequent M D computations these values are subject to either 
moderate oscillations or definite transitions to other domains. Note that all amide 
structures shown in Figures 4 to 6 have sugars with N-type puckering (between C3'-
endo and 04'-endo), i.e., the torsion enforcement on the modified backbone linkages 
did normally not alter considerably the puckering mode from the C3'-endo starting 
geometry. A more detailed discussion of backbone torsion angle transitions and of the 
sugar puckering follows in the subsequent sections dealing with M D simulations. 

A comparison between the lowest-energy conformations of amide 1 and amide 5 
(Figure 4), respectively of amide 3 and amide 4 (Figures 5 and 6) reveals a close 
geometrical resemblance between these structures that are the respective isomers of the 
same hypothetical trans double bond. The small differences can be attributed to the 
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8. W O L F E T A L . Amide-Modified Backbones 

I 

C3'—C2' 

.C3'-C2' 

i+1 
Figure 3. Definition of torsion angles in backbone-modified oligonucleo
tides: X-Y-a-Z$-W3-C4'-z-C3'-z-x£-Y-Z; 04'-Cl'-*>-Nl-C2 (according 
to reference (20). 

Figure 4. Lowest-energy geometries for the amide backbone modifications 
2 (left), 1 (center), and 5 (right). The structures were cut out of the 
octamer duplex. Base atoms are not shown for clarity. 
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120 COMPUTER-AIDED MOLECULAR DESIGN 

Figure 5. Three lowest-energy geometries for the amide 3 backbone 
modification: 3a (left), 3b +0.5 kcal-mot1 (center), 3c +2.9 kcal'mot1 

(right). Energy values refer to the entire octamer duplex as shown in 
Figure 2. See also legends of Figure 4. 

Figure 6. Three lowest-energy geometries for the amide 4 backbone 
modification: 4a (left), 4b +1.6 kcal'mot1 (center), 4c +3.8 kcal'mot1 

(right). See also legends of Figures 4 and 5. 
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8. WOLF ET AL. Amide-Modified Backbones 121 

repulsion between the amide oxygen and the furanose ring oxygen (04') in amides 1 
and 4, as compared to the corresponding attraction of the amide hydrogen to the 04 ' 
atom in amides 5 and 3, respectively. Overall, the similar lowest-energy backbone 
conformations corroborate the interpretation of the experimental results that geometrical 
considerations seem to govern the relative stability of the modified duplexes. 

In amides 1 and 5, the amide bond corresponds to the backbone torsion angle ζ 
which is thus forced to roughly trans. The other backbone torsion angles have to adjust 
to this "unnatural" conformation, resulting in an overall backbone arrangement not 
commonly found in nucleic acids, e.g., α and β in gauche plus (g+). 

In the amide 2 modification, β coincides with the amide bond. The lowest-energy 
conformer is found to adopt a backbone conformation similar to that in wild-type 
A-DNA, i.e, all backbone torsion angles automatically adjust to the standard confor
mational ranges found in DNA once β is fixed to the "natural" trans range. In that 
sense, the amide 2 modification is the perfect geometrical match of a natural D N A 
backbone. 

In both amide 3 and amide 4, the amide bond corresponds to a. In standard DNA 
duplexes, α is generally in the gauche minus (g~) range and the torsion angle γ is in the 
gauche plus (g+) range. However, in another low-energy geometry, found also experi
mentally in A-DNA crystals (25-25), both α and γ are in the trans range. The lowest-
energy conformations induced by the modifications amide 3 and amide 4 are found to 
have [α,γ] in [f,r] with the other torsion angles adopting the same conformational 
ranges as in the alternative A-DNA structures mentioned above. Thus, both amide 3 and 
amide 4 modifications induce a backbone conformation found experimentally in X-ray 
studies on DNA and hence virtually free of strain. 

Molecular Dynamics. It is experimentally established that in R N A - D N A hybrid 
duplexes, the RNA strand riboses stay in the C3'-endo puckering domain, the DNA 
strand deoxyriboses adopt an average puckering mode between 04'-endo and Cl'-exo, 
and the global helical parameters of the hybrid duplexes are closer to Α-form than to 
B-form (26-30). Considering furthermore the low-energy barriers for deoxyribose 
puckering transitions, the Α-form starting geometry seems appropriate for M D 
simulations. This was also verified in M D simulations of a wild-type RNA- DNA 
hybrid duplex r (GA 1 2 G)- d(CT 1 2 C) for which the experimental results were correctiy 
reproduced (57). The various modifications in different low-energy conformations were 
introduced alternatingly in the D N A strand of the \4mer R N A - D N A duplex 
(Figure 2). For the amide modifications, the resulting energy differences in the \4mer 
duplex between the distinct conformers were roughly proportional to the differences 
observed for a single modification in the octamer duplexes investigated in conforma
tional analysis. This finding may be explained by a compensation of geometrical 
changes by the alternating wild-type phosphodiesters in such a way that consecutive 
amide modifications do not "feel" each other when separated by a natural linkage. 

M D results were analyzed with respect to backbone conformational transitions and 
to the behavior of the sugar puckering in the modified strands. Detailed helical 
parameters were not considered at this stage of the investigation. For a global overview, 
Figures 7 and 8 depict the \4mer duplex starting structures and the average dynamics 
geometries, with coordinates averaged over the 100 ps trajectories. These figures 
visualize qualitatively the fact that the amide modifications lead to stable duplexes in 
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122 COMPUTER-AIDED MOLECULAR DESIGN 

which base pairing is more or less conserved on average, although momentary 
disruptions were noticed during the M D trajectories, an observation made also for the 
wild-type reference structure (structures on the left in Figures 7 and 8). 

In Table Π are listed time-averaged values (with standard deviations in parentheses) 
for the backbone torsion angles, the glycosidic torsion angle χ and the sugar puckering 
parameters Ρ and x m (defined according to reference (32)) for the middle residues T*T 
of the amide-modified 14mer duplexes r(GA 1 2G)-d(CT(T*T) 5TC). Note that there was 
no substantial difference between the behavior of these middle dimers and the adjacent 
modification-linked dimers. A l l data reported in Table II were obtained starting from 
the lowest-energy conformations as shown in Figures 4 to 6. The corresponding data 
for an unmodified RNA- DNA duplex, obtained under identical conditions, are listed 
for comparison. 

Backbone Transition. DNA strands with amide modifications 1 and 3 oscillated 
around the lowest-minimum-energy conformation shown in Figures 4 to 6. This is 
evidenced by the small standard deviations for the backbone angles reported in Table II. 
For amide 3, starting from the second-lowest-energy conformer (3b in Figure 5), four 
out of five modified residues converted into the lowest-energy geometry (3a in 
Figure 5) during the 100 ps dynamics run. During this simulation period, no transition 
from 3a to 3b was observed. Since the conversion from 3b to 3a is readily observed, 
the involved barrier can be overcome on the 100 ps time scale. Also, the difference in 
potential energy between the two conformations is rather small (~ 0.5 kcal- mol"1). The 
absence of 3a -» 3b transitions has been attributed to the larger puckering amplitude 
observed in the 3a conformation, i.e., the overall entropy of the system increases when 
passing from 3b to 3a. Thus, the 3a conformation would be preferred over 3b for free 
energy reasons. A more detailed analysis on these transitions and their possible reasons 
will be given elsewhere (Wolf et al., submitted for publication). 

In amide 2 and amide 5 modified DNA strands, transitions in the modified backbone 
portions were observed even when starting from the lowest-energy geometry as depicted 
in Figure 4. The amide 2 modified strand underwent transitions [α,γ] from [g\g+] to 
[r,r] in various unmodified portions, but also in the amide-modified residues. This type 
of transition is commonly observed in molecular dynamics simulations on wild-type 
DNA- D N A and RNA- DNA duplexes (see e.g. references (57,3334). Its occurrence 
in the simulation of the amide 2 modified backbone portions underlines the geometrical 
similarity of the amide 2 modification and the natural phosphodiester linkage, already 
observed in the conformational analysis. In amide 5 modified strands α and ε in the 
modified part oscillated coherently between two conformational domains, the lowest-
energy domain as depicted in Figure 4 and the next-lowest-energy domain found in the 
conformational analysis. Similarly, the amide 4 modified portions showed transitions 
between the low-energy structures 4a and 4b depicted in Figure 6. These transitions are 
related to changes in the torsion angles β and ζ, as seen also in the higher values for 
the M D standard deviation of these angles in Table II. 

Sugar Puckering. The alternating character of the amide-modified backbones has 
an interesting effect on the overall sugar puckering scheme. Indeed, there are two 
different types of deoxyriboses, one having the modified backbone part attached to the 
C3' carbon (residue i in Figure 3) and one having the modified backbone sequence 
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8. WOLF ET AL. Amide-Modified Backbones 

Figure 7. Starting structures (top) and average dynamics geometries 
(bottom) of 14mer duplexes. From left to right: wild-type RNA - DNA, 
amide 1, 2, and 3a modified duplexes. The 5'-end of DNA or modified 
DNA strands is always at the left top of each duplex. The ribbons go 
through C3' as trace atom with CT being the plane atom. 

Figure 8. Starting structures (top) and average dynamics geometries 
(bottom) of 14mer duplexes. From left to right: wild-type RNA'DNA, 
amide 4, and amide 5 modified duplexes. See also legend of Figure 7. 
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124 COMPUTER-AIDED MOLECULAR DESIGN 

Table II. Time averages and standard deviations (in parentheses) of torsion 
angles and puckering parameters (in degrees) for the central dimer in the 
amide-modified DNA strand in Umer duplexes r(GA1 2G)-d(CT(T*T)5TC). 

wild-type amide 1 amide 2 amide 3aa) amide 4aa) amide 5 

ab> -70 ( l l ) c ) 

-70 (12) 
-73 (12) 
60 (14)d) 

-71 (12) 
-140 (64) 

β 175 (10) 
176 (10) 

172 (9) 
64 (7) 

175 (10) 
179 (10) 

Y 63 (9) 
62 (11) 

59 (9) 
62 (10) 

60(10) 
127 (58) 

δ 108 (18) 
108 (17) 

98 (23) 
90(14) 

83 (14) 
104 (27) 

ε -176 (8) 
-176 (9) 

-178 (14) 
-175 (10) 

-175 (8) 
-170 (10) 

ζ -89 (12) 
-88 (11) 

180 (11) 
-83 (12) 

-71 (13) 
-78 (14) 

Χ -139 (16) 
-140 (15) 

-134 (19) 
-139 (16) 

-156 (12) 
-146 (15) 

110 (27) 
112 (26) 

82 (41) 
93 (23) 

66 (28) 
88 (55) 

42(5) 
42(6) 

44(6) 
46 (5) 

41 (6) 
40(6) 

-74 (11) 
171 (8) 

-78(11) 
171 (9) 

-75 (11) 
105 (40) 

179 (8) 
-149 (24) 

174 (9) 
-94 (21) 

171 (9) 
69 (9) 

58 (10) 
173 (9) 

59 (10) 
178 (9) 

61 (10) 
67 (10) 

94 (19) 
107 (25) 

84 (16) 
100 (23) 

88 (18) 
90(18) 

176 (9) 
-166 (9) 

169 (9) 
-166 (10) 

155 (44) 
-172 (9) 

-100 (18) 
-79 (13) 

-137 (24) 
-76 (13) 

-176 (10) 
-79 (12) 

-156 (13) 
-154 (17) 

-154 (11) 
-156 (15) 

-145 (19) 
-139 (16) 

86 (35) 
103 (43) 

61 (33) 
90(40) 

63 (40) 
87 (31) 

42 (6) 
42 (6) 

42(6) 
42(6) 

43 (6) 
43 (6) 

Using the lowest-energy geometry in Figures 4 to 6 as starting points. ' See Figure 3 
and reference (20) for torsion angle definitions; c ) the first line for each value refers to 
the residue with the amide-modified backbone portion attached at C3* (i in Figure 3), 
the second one to the residue with the modification attached to C4' (i+1 in Figure 3); 
d^ values in bold correspond to modified backbone portions; e* Ρ is the phase angle of 
pseudorotation and x m the maximum degree of puckering (see reference (32) for 
definitions). 

attached to C4' (residue M in Figure 3). The corresponding puckering modes are found 
on the first and second line, respectively, in Table II. 

For all five amide modifications, these two types of deoxyriboses have a different 
average puckering behavior. In all cases the sugars with the modification attached at 
C3' (0 have smaller average values for Ρ than the sugars with the modified portion 
bonded to C4' (i+7). Considering that the difference of two degrees observed between 
the Ρ values of the middle residues in the wild-type RNA* D N A duplex reflects the 
random character of molecular dynamics, the corresponding differences in the amide-
modified strands are significant (e.g. almost 30° for amide 4). 
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8. WOLF ET AL. Amide-Modified Backbones 125 

Furthermore, the sugar puckering scheme was found to depend also on the actual 
backbone conformation, and not only on the nature of the amide modification. Indeed, 
starting the dynamics trajectories from other low-energy conformers (not shown in 
Table II) leads to a different puckering scheme in some cases, as already reported in 
the previous section. The backbone conformation controls both the amplitude and the 
mean value of the phase angle of pseudorotation P. Furthermore, the puckering state 
of the sugar determines to some extent the torsion angle to the base χ. TTius the various 
substructures in the modified DNA strands are strongly interrelated and modifications 
to one part inevitably affect other portions. Details about this structural interdependence 
will be given elsewhere (Wolf et al., submitted for publication). 

The (unmodified) complementary RNA strands showed no unusual behavior in any 
of the amide-modified duplexes. All riboses remained confined to the C3'-endo 
puckering mode as has also been found for RNA strands during MD simulations of 
wild-type RNA- DNA hybrid duplexes (37). 

Conclusions 

The simulation results of alternatingly amide-modified DNA strands paired to 
complementary RNA sustain the concept that such modifications do not introduce 
considerable strain or steric hindrance. 

The amide-modified duplex structures behave quite similarly to the natural 
RNA- DNA hybrids (26-37) with all riboses in the RNA strand adopting the standard 
A-type puckering C3'-endo, whereas the deoxyriboses oscillate between the classical 
C3'-endo and C2'-endo puckering modes, with an average value concentrating around 
04'-endo. Some modifications can adopt "natural" DNA conformations because the 
amide bond corresponds to a torsion angle which is trans (like β in the canonical A-
DNA, or α in the other low-energy conformation found in standard DNA (23-25)). 
Thus, amide 2, with the amide bond corresponding to β, adopts all torsion angles in the 
range of wild-type DNA. Furthermore, the transition [α,γ] from [g',g+] to [t,t], observed 
in MD simulations of wild-type DNA- DNA (33,34) or RNA- DNA (37) is also 
noticed for this modification. Both amide 3 and amide 4, with the amide bond 
corresponding to a, adopt the lowest-energy conformation with [α,γ] = [t,t]. 

Obviously, the simulations alone cannot explain the T m differences observed between 
the five amides reported. These differences would have to be analyzed from the point 
of view of free energy, i.e., including entropy considerations. Such an approach is 
currently excluded considering the very large conformational space available to single 
strands. Still, the simulations have revealed structural details concerning possible 
backbone conformations and sugar puckering schemes which may be considered as 
useful hints for the design of further backbone modifications of this type. 
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Chapter 9 

Simulations of Drug Diffusion 
in Biomembranes 

Terry R. Stouch, Howard E. Alper1, and Donna Bassolino 

Department of Macromolecular Structure, Bristol-Myers Squibb 
Pharmaceutical Research Institute, Princeton, NJ 08654 

Bioavailability, largely due to membrane permeation, is an 
important step in the drug delivery process and therefore 
drug design. Here we discuss, over 10nsec of molecular 
dynamics simulation of small molecules in lipid bilayer 
membranes that were used to elucidate the mechanism of 
diffusion of drugs within biomembranes. 

These simulations accurately reproduce many 
experimentally observed parameters. The simulations also 
agree with theory that indicates the lipids have internal 
structure that influences the diffusion process. These 
simulations show that even within the hydrocarbon chains 
there are distinct regions between which the rate and 
mechanism of diffusion varies. These variations are linked to 
the frequency and size of spontaneously arising voids within 
the bilayer as well as the rate of torsional isomerization of 
the hydrocarbon chains. 

Bioavailability is an important component of drug efficacy. Many 
promising drug candidates have been abandoned because of their 
inability to travel from their site of administration to their site of action. 
Needless to say, this process is the subject of much research. 

Often, bioavailability is dependent on passive transport across 
biological membranes. Correlations are often drawn between a 
molecule's bioavailability and its partition coefficient between water and 
organic phases (7). These coefficients are a thermodynamic measure of 
the relative solubility of a compound between the phases. Membrane 

Current address: Moldyn Corporation, Cambridge, M A 02138 
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128 COMPUTER-AIDED MOLECULAR DESIGN 

permeation, however, is a measure of the flux of a compound from one 
side of a membrane to another and includes, in addition to relative 
solubility, the rate of movement within the membrane. Correlations 
have also been drawn between permeability itself and partition 
coefficients. Although these correlations are good for many molecules, 
they do not universally hold. Small molecules (MW ~<100 amu) show 
especially anomalous behavior (2-4). 

This is actually consistent with earlier theories of Lieb and Stein (5, 
6) who speculated that the mechanism of diffusion within membranes 
may be similar to that for solutes within soft polymers. There, diffusion 
is thought to occur by intermittent "jumps" between spontaneously 
arising voids within the polymer. This suggests that molecules which 
are small enough to fit within the voids present in biomembranes show 
enhanced rates of permeation because they have enhanced rates of 
diffusion due to this jumping mechanism. 

The observed high correlations between permeation and partition 
coefficients for many compounds has led to the incorrect-but-common 
assumption that the water/organic interface is a good representation of 
a biomembrane. Yet, due to the amphiphilic nature of the lipid 
molecules comprising biomembranes, biomembrane properties 
(including the ordering of the hydrocarbon region) are different from 
those of bulk hydrocarbon. This is further supported by a growing body 
of theoretical and experimental data. Statistical mechanical studies of 
Dill and coworkers clearly demonstrate the interfacial nature of a 
membrane. The anomalous behavior of small membrane permeants, 
mentioned above, also suggest differences. In addition, White and 
coworkers (7, 8) have shown this to be true in experimental studies of 
membrane/solute interactions. 

Here we review atomic-level molecular dynamics simulations done in 
our laboratory which support both the concepts on diffusion proposed by 
Lieb and Stein as well as the concept of internal biomembrane structure 
proposed by Dill and coworkers (9, 10) and by White and coworkers (7, 
8). We find that small solutes do indeed travel by jumping between 
available voids in the bilayer and that this motion is size dependent. We 
also show that this movement is not homogeneous throughout, but 
varies with distance from the membrane/water interface which suggests 
an internal membrane structure unlike that of bulk alkane. 

METHODOLOGY 

Although much useful understanding can often be gained from static 
structures of some biomolecules, such as proteins, biology is a dynamic 
process that is dependent on molecular motion. This is perhaps 
nowhere as true as for biomembranes whose properties are completely 
dependent on their fluidity. The magnitude of this fluidity is of such 
importance that nature maintains tight control of it through the content 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

6,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
00

9

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 
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of cholesterol and unsaturated lipid molecules. Because of this, we use 
molecular dynamics (MD) simulations as a tool to study biomembranes. 

Previously, we studied the ability of empirical force fields and MD 
methods to duplicate experimenatally-known properties of both the 
crystal structures of lipid molecules as well as those of the 
physiologically-relevant La phase of lipid bilayers. These simulations 
have successfully reproduced a wide range of structural and dynamical 
properties (11-16). Confident in the physical relevance of these 
simulations, we extended them to study the diffusion of solutes within 
the bilayers. Much of our discussion here will be drawn from our early 
studies of benzene as a diffusant (at concentrations equivalent to those 
used clinically for anesthetics) (17) although it also includes results 
obtained from studies of several other molecules of varying size and 
complexity. Perhaps the first thing to be examined in any simulation is 
its ability to duplicate known, experimentally determined, properties. 
Âs noted above, comparison between simulation and experiment for the 
bilayer itself was quite good. As we have also noted (17), calculated 
properties of the diffusing solutes (diffusion, rotation) were also in good 
agreement with values observed experimentally as were the responses 
of the bilayer itself to the presence of the solutes. 

All atoms were included in the simulations, including the hydrogens 
of the lipid hydrocarbon chains. Progressively more studies demonstrate 
the need for this level of detail in order to adequately reproduce physical 
quantities, particularly dynamical quantities such as diffusion 
coefficients (18-21). Each monolayer contained 18 lipid molecules and 
almost 500 water molecules. This resulted in a bilayer of over 7000 
atoms and 34.5À on a side. Simulations were done with several 
concentrations of benzene (1-4 benzene molecules) all of which were at 
about the concentrations of anesthetics used clinically. 

The details of the simulations were presented previously. In brief, 
using a modified version of Discover version 2.6 (Biosym Technologies, 
Inc. San Diego, CA) the trajectory was integrated using the Verlet (22) 
algorithm with a timestep of 1.0 fsec. The temperatures for the lipids 
and waters were separately maintained at a target temperature through 
coupling to an external bath (23). Two-dimensional periodic boundary 
conditions were used in the plane of the membrane to effectively 
simulate an infinite bilayer plane. A repulsive "wall" was used in the 
third dimension to contain the waters and maintain the proper overall 
density of the system. No other constraints or restraints were used. All 
of the molecules, lipid, water, and solute, were allowed to evolve 
according to the classical dynamics of the system which was governed by 
the force fields. 

All of the results are for simulations of a minimum of 1 nsec duration. 
Our studies show that lengths of this magnitude are required in order 
for many properties to converge (14). This makes sense from a physical 
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standpoint. For these simulations, the more important motions are 
those of the hydrocarbon chains, determined primarily by rotation about 
single bonds. For an individual rotation, this torsional interconversion is 
known to require from several tens to several hundreds of psec 
(confirmed both by experiment and by simulation). Long simulations are 
obviously required in order to adequately sample this motion. 

DISCUSSION 

During over 7 nsec of simulation, benzene molecules diffused freely 
throughout the bilayer from positions near to the glycerol portions of the 
lipids and the polar lipid headgroup region to positions in the center of 
the bilayer. Often these molecules resided for long periods at particular 
locations relative to the perpendicular to the plane of the bilayer. The 
Einstein relationship is commonly used to calculate diffusion 
coefficients, D, from the slope of a plot of the mean-squared movement 
versus the time period of that movement. We find that molecules that 
spend more time near the water/lipid interface have D several times 
smaller than those near the center. Molecules in intermediate regions 
diffuse at an intermediate rate. Interestingly, this intermediate rate is 
similar to that which we see in simulations of benzene in bulk alkane. 

Diffusion coefficients are derived from linear fits to time-average 
data. They are dependent on the degree of sampling during the 
simulation and we find that they require long simulations to converge to 
stable values. Also, although some of the benzene molecules tended to 
stay in particular regions of the bilayer, they were free to move and so 
comparison of the values of D between molecules was qualitative. In 
order to gain further quantitative insight into the details of the process 
of diffusion, we examined the movements that occurred within 1A slices 
parallel to the membrane plane. The amount of movement rather than 
actual diffusion in these slices was used because the amount of time 
spent in the slices by the benzene molecules was insufficient to provide 
enough sampling for reliable estimates of diffusion coefficients. Figure 1 
is a plot of the average distance traveled within these slices over 
different periods of time versus the distance of the slice from the bilayer 
center (the results of both monolayers of the bilayer were merged). At 
very short times (100 fsec) little difference is seen in the motion in 
different regions. However, at progressively longer times, a substantial 
difference occurs, as was suggested by the values of D. Close to the 
bilayer center, the movements are larger than closer to the headgroup 
region. The difference develops early, in less than five psec. 

Of course, Figure 1 shows averaged quantities, movement averaged 
over time as well as over the benzene molecules. Insight into the 
genesis of this effect can be gained through a closer look at the discrete 
movements that were used to derive that plot. Figure 2 shows for three 
individual molecules the distance traveled in all 5 psec increments 
through their entire trajectories for one simulation. One of the molecules 
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1 1 1 1 1 1 

2 4 6 8 10 12 

Distance from Bilayer Center (A) 

Figure 1. Average distance traveled (averaged over time, molecules 
and monolayers) by the benzene molecules as a function of distance 
from the center of aie bilayer. 
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(part a) spent most of the simulation near the bilayer center. The 
second was usually closer to the headgroup region. The third is for a 
simulation of benzene molecule in bulk alkane. 

The plots are noticeably different. That for the molecule near the 
center has a number of sharp spikes, signifying "jumps," larger-than-
average movements for that time period. That for the molecule near the 
headgroup has few jumps, and these are much smaller and less 
frequent. Note that the plot for benzene in the bulk alkane 
demonstrates essentially intermediate behavior, as was true for the D, 
also. We find that plots such as these are so distinctive that they can be 
used to predict the location of the solutes. 

The increased size and frequency of the jumps are no doubt 
responsible for the increase rates of movement and diffusion seen for the 
benzene molecules in the bilayer center. The short time motions, as 
shown in Figure 1, appear essentially the same regardless of location. 
The difference in movement starts to occur at about the time that jumps 
manifest themselves. These jumps typically occur within about 2.5 psec 
and are of 6-8Â in magnitude. 

All of the data presented above shows that the solutes move 
differently in different regions of the bilayer and suggest that, as 
hypothesized, the bilayer has an internal order unlike that of bulk 
alkane. But how does it occur and how does it affect the diffusion of the 
solutes? The atomic-level nature of the simulations allow us to probe the 
details of the bilayer structure and how it affects the processes of 
diffusion. There seem to be two particular features of the bilayer that 
affect diffusion: the distribution of free volume within the bilayer and 
the rate of torsional isomerization of the hydrocarbon chains. 

It is well-known that lipid bilayers in the La phase contain a 
substantial amount of free volume. The progression from the close-
packed crystalline phase of lipid molecules to the physiologically-
relevant La (or liquid-crystalline) phase is accompanied by a substantial 
increase in volume. 

Figure 3 shows a time composite plot of the available free volume 
versus position transverse to the bilayer. It shows that the available 
free volume is greatest near the bilayer center. We have also found that 
the voids that comprise this volume are substantially larger near the 
center than closer to the headgroup/water interface. That the rate of 
diffusion is greatest in the region with the most free volume confirms 
part of Lieb and Stein's hypothesis that the process of diffusion is 
mediated by the occurrence of voids between which the solutes can 
move. 

The size and shape of these spontaneously-arising voids are 
determined by the positions and movements of the lipid molecules. The 
pertinent regions of the bilayer for this discussion are composed 
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Location within the Bilayer 

Figure 3. Relative amount of available free volume in the bilayer 
plotted against location within the bilayer. 
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primarily of the hydrocarbon chains. For the nsec timescale of these 
simulations, the most pertinent motions are the rates of rotation about 
the hydrocarbon single bonds. The residence time of a particular 
rotamer ranges from several tens of psec to hundreds of psec. 
Significantly, these times vary with position in the bilayer. Experiment 
and simulation both show that the faster rates of torsional 
interconversion occur toward the methyl terminal end of the 
hydrocarbon chains. This end of the chains is most commonly found near 
the bilayer center. The torsions near the ester linkage, always near the 
interface, experience the longer residence times. 

These torsional interconversions are important to the process of 
diffusion. Many instances have occurred where the jumps noted above 
are mediated by these changes. Figure 4 shows such an instance. The 
benzene molecule occupied a void near the lipid molecule. One wall of 
the void was composed of the hydrocarbon chain of the lipid which also 
served to separate that void from another. In the course of less than 1 
psec, one torsion within that chain changed its state from gauche to 
trans, straightened the chain, and removed it as a barrier between the 
voids. Within a few psec, the benzene molecule moved 8Â to occupy the 
new void. During this period, very little else happened in that region of 
the bilayer. For an equivalent period of time, the average movement for 
a benzene molecule was less than 2Â. 

The increase rate of torsional isomerization at the bilayer center 
means that these torsion-gated jumps can occur more frequently in this 
region. This supports the second half of Lieb and Stein's hypothesis, 
that increased diffusion is due to jumps between voids. Diffusion is 
fastest at the bilayer center, where, in addition to larger and more 
frequent voids, the rate of interconversion is larger and jumps between 
the voids occur more frequently. 

CONCLUSION 

The simulations provide us with information both about the process 
of diffusion and about the structure of the bilayer. They confirm Lieb 
and Stein's hypothesis that increased rate of diffusion occurs when 
molecules can fit within spontaneously-arising voids in the bilayer and 
can jump between those voids. They also demonstrate that this process 
is not the same in all regions of the bilayer which demonstrates a non-
homogeneous structure, as proposed by Dill and coworkers. The 
distribution of voids and the frequency of the torsional interconversions 
vary with position in the bilayer and result in differences in the rate of 
diffusion. 

In addition, the simulations show, as proposed by both Dill and 
coworkers and White and coworkers that the bilayer/water interface is 
not equivalent to a bulk organic/water interface. Bulk organic would be 
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Figure 4. Illustration of a "jump" of a benzene molecule (shown side-
on as a space filling figure) which was permitted by isomerization of 
just one torsion in one hydrocarbon chain in one lipid molecule (also 
shown as a space filling figure). The rest of the lipid and water 
molecules are shown as stick figures (a) Prior to the jump. The 
benzene molecule (upper right) occupied one void for tens of psec. 
This void was separated from another void by the hydrocarbon chain 
of a lipid molecule (b) After the jump. After the change in one 
torsion, the benzene moved 8Â in about 2.5psec to occupy another 
void. (Reproduced from reference (27). 
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expected to be homogenous throughout. The hydrocarbon region of a 
lipid bilayer close to the headgroups shows substantially more order and 
tighter packing and, hence, slower diffusion of solutes than does bulk 
hydrocarbon. Toward the bilayer center, where the terminal methyl 
groups of the hydrocarbon chains are located, the bilayer is 
substantially more fluid than bulk hydrocarbon (such "end-effects" are 
observed in studies of polymer fluidity (24)). Only near the midpoint of 
the monolayer does the hydrocarbon of the bilayer resemble that of bulk 
as reflected by the rate of movement of the benzene molecules. Other 
simulations of lipid bilayers have reached similar conclusions regarding 
the relationship between the properties of hydrocarbons and those of the 
hydrocarbon portion of the bilayer (25, 26). 

Lieb and Stein (5, 6) stated that the magnitude of these effects is 
dependent on solute size. Our studies confirm this. We have now 
simulated the diffusion of a number of solutes of varying size. Large 
solutes show less differential in diffusion rate between different regions 
of the bilayer. Eventually, a size is reached where no differential is seen. 
Presumably this results from a change in the mechanism of movement, 
since these larger solutes no longer fit within the spontaneously arising 
voids. For solutes of this size, anomalously high rates of permeation 
would no longer be caused by anomalously high rates of diffusion and 
permeation could be more directly tied to partitioning, alone. 

These studies are additional instances that show that simulation can 
provide physically realistic results. They serve to help us to gain insight 
into biochemical events and provide atomic level explanation of 
experimental results and detailed description and verification of high-
level theory. 
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Chapter 10 

Genetic Algorithm Based Method To Design 
a Primary Screen for Antirhinovirus Agents 

E. P. Jaeger1, D. C. Pevear, P. J. Felock2, G. R. Russo3, 
and A. M. Treasurywala 

Sterling Winthrop, Inc., 1250 South Collegeville Road, P.O. Box 5000, 
Collegeville, PA 19426-0900 

The human rhinoviruses are the major etiological agents of the 
common cold in man. Because there are over 100 serologically 
distinct human rhinoviruses, the design of a common cold treatment 
requires activity against a broad spectrum of these viruses. It is 
impractical to test all molecular candidates against all rhinovirus 
serotypes. Computer methodologies were employed to select a subset 
of serotypes whose sensitivity to antiviral compounds correlated with 
the sensitivity of the larger group of viruses. The process involved 
three steps: i) defining a set of existing molecules which spanned the 
structural diversity of known human rhinovirus inhibitors; ii) obtaining 
experimental observations of activity of each of the selected molecules 
against the larger set of rhinovirus serotypes; and iii) using a genetic 
algorithm to sort through the resulting biological data and select the 
serotypes for the new primary screen. The selected subset of viruses 
provided significantly improved sensitivity prediction over an existing 
subset of viruses. The method is generally applicable to cases where 
spectrum or specificity of activity against macromolecular targets is 
desired. 

One of the most common questions asked of computational chemistry groups in 
industry concerns measures of their usefulness in the mainstream activity of designing 
more specific, potent and useful agents. These questions are basically centered around 
the issue of impact; i.e., how much impact is the computational effort having on the 
project. We offer here an example of a rather unique way in which computational 
efforts have had impact on an ongoing project: the design of potent broad-spectrum 
antirhinoviral agents. In this case, a result or activity is said to have impact if it 
causes the project team to do or plan something differendy than what it would in the 
absence of that result or activity. This impact can be manifested in an explicit project 
team decision to follow or not to follow a specific course of action. 

1Current address: 3-Dimensional Pharmaceuticals, 3700 Market Street, 
Philadelphia, P A 19104 

2Current address: Merck Research Laboratories, Division of Merck and Company, Inc., 
West Point, PA 19486 

3Current address: Virogenetics Corporation, 465 Jordan Road, Troy, N Y 12180 

0097-6156/95/0589-0139$12.00/0 
© 1995 American Chemical Society 
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There has been an ongoing interest at Sterling Winthrop to design potent agents 
with a broad spectrum of activity against the major etiologic agents of the common 
cold, the human rhinoviruses (HRVs). To date more than a hundred strains of HRVs 
have been isolated and cultured. This large number of viruses made it impractical to 
screen all new compounds against all of the known serotypes even with high capacity 
robotic assays. The problem therefore, was to find a smaller set of serotypes that 
could form the primary screen. The qualities of this subset were: (i) it should be small 
enough to accomodate the screening of all of the newly synthesized compounds; (ii) it 
had to be picked in such a way that the results from this subset formed a reliable 
predictor of the activity that would be found in more complete secondary testing; and 
(iii) it had to work for the range of structural diversity of compounds that had been 
synthesized during the project history and it must be able to work for relevant 
chemical series that might be synthesized in the future. The issue here is not 
uncommon in the design of primary and secondary biological assays. The screen 
should not be so specialized to a given chemical series that it would miss good leads 
from a divergent series of compounds. 

The approach that we have devised to address this problem is a generic one that 
holds significant promise not only for the design of more potent H R V inhibitors, but 
also for any system which would benefit from subset screening. In this report the 
methods used to address this problem are detailed so as to bring focus on a novel 
impact that computational methods have made to the progress of a team and also to 
inspire the wider use of these techniques. 

The series of compounds that have been synthesized in this project bind in a 
hydrophobic pocket in the HRV capsid and inhibit the attachment of the virus to the 
cellular receptor and/or the release of the viral RNA into the cell cytoplasm (7-5). 
The difficulty of designing broad-spectrum active compounds hinges on the fact that 
these pockets have slightly different sizes and shapes for each of the serotypes (<5). 
Thus, the problem of design becomes one of finding the molecule that wil l most 
completely fill the pockets of the largest number of serotypes while at the same time 
having offending steric interactions with the smallest number of them. The primary 
screen that was in place at the time of this study was composed of 15 serotypes. The 
secondary screen contained an additional 39 to make a total of 54 serotypes. Table I 
lists the 54 human rhinovirus serotypes. 

The problem at hand was to find a near-optimal set of 10 or 15 serotypes that 
best predicted the activity against the 54 viruses. The scope of the problem can be 
illustrated by recognizing that there are 1.1 χ 10^5 ways to form a set of 15 serotypes 
from a pool of 54 serotypes and 8.7 χ ΙΟ 1 ^ w a y s that a pool of 10 serotypes can be 
selected from the same pool of 54 viruses. 

Genetic algorithms (GAs) have been shown to be very efficient at optimizing 
functions which are known in the computer science community as being nearly NP-
complete (i.e. for which an analytical solution is nearly impossible). This method has 
been shown empirically to find near optimal solutions to such problems with 
remarkable efficiency (7). It was therefore resolved to test the G A method to find this 
(these) set(s). GAs attempt to apply the laws of population evolution (i.e., selection, 
crossover, and mutation) to sets of "solutions" to a given function (8-11). In our case 
an individual in this population would be a set of serotypes. The population would be 
made up of many such sets. For each set, a comparison would be made of how well 
the set represented the viral sensitivity of the 54 serotypes using a standard collection 
of compounds. The details of the compounds and methods used for this comparison 
will be described in the next section. In other words, starting from a set of randomly 
chosen serotypes, the G A would be asked to evolve another set that was a near 
optimal predictor of the overall activity of any given compound against the 54 
serotypes. Based on the previous reports of the performance of GAs on other 
unrelated problems it was expected that a near optimal solution would be identified. 
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Materials and Methods. 

Compound Selection. If the G A application was to succeed, it was necessary to 
select a set of compounds that best represented the structural diversity of the 769 
rhinovirus compounds that had been synthesized and, to the best of our abilities, also 
accomodated types of functionality within the general class that had not yet been 
synthesized. This smaller set of "representative" compounds would be tested against 
the 54 serotypes. This data would then be used for the G A optimization. The 
selection of this smaller set of compounds was extremely important as it could 
significandy affect the outcome of the experiment. Due to time constraints, it was 
determined that this set of compounds should not exceed 30. It was decided that a 
rational method would be developed and applied to the selection of these compounds. 
Once they were selected by the team through the application of the developed 
method, they would be expressly tested against the 54 serotypes to generate the data 
that would be used in the GA-based part of this experiment. 

A l l of the molecules were initially classified according to the presence or absence 
of molecular keys as defined in MACCS (72). Thus each molecule was translated 
into a bit string. This string was as long as the set of available keys (147 in our case). 
Each key was represented in this string at a given unique position. The presence of a 
"0" in a particular position in this string indicated the absence of that key (or 
functionality) in the molecule while the presence of a "1" indicated its presence in that 
molecule. The similarity of these bit strings to one another was measured pairwise for 
all pairs of molecules using the Tanimoto similarity index. This generated a (769 χ 
769) matrix of similarity indices. The matrix was analyzed by two clustering 
methods: the Jarvis-Patrick (13) and by hierarchical clustering methods available in 
the SAS (14) and S (75-76) data analysis packages. This divided the molecules into 
families. The classification at one extreme consisted of only one family for all 
molecules. At the other extreme it consisted of 769 families, each composed of only 
one molecule. The classification level, or resolution, chosen for this study was 30 
since the objective was to choose 30 molecules that spanned the property space of the 
whole set as completely as possible. 

Another classification scheme was also used. Here the molecules were described 
by atom pair(77-7#) lists. Each pair of atoms in a molecule was classified by two 
pieces of information: (i) the atom information at each end and (ii) the "distance" 
between the atoms in terms of the bonded path. This information was converted into a 
string for each molecule. These strings were compared for all pairs of molecules using 
the same Tanimoto similarity index. This resulted in another (769 χ 769) matrix that 
was similarly analyzed by clustering methods to define 30 families of compounds. 
Again the classification scheme used was that of Jarvis-Patrick nearest neighbor and 
hierarchical clustering. 

From these analyses a set of some 30 families would be identified and 
representatives of these families would be chosen in consultation with the project 
team. These compounds were tested against the 54 serotypes of the secondary screen 
in a high capacity tissue culture infectious dose-50% (TCID50) assay that has been 
described previously (79). 

The project team had also tested 28 other compounds on the basis of their interest 
to the project against the 54 serotypes used in the secondary assay. This set formed a 
good test bed which was separate from the so called learning set mentioned above. 
This set was used to test the quality of the selection of the final primary set of 
serotypes. 

Genetic Algorithm & Analysis. The program used for the G A was GENESIS which 
was obtained from the public domain (20). Default values for most of the parameters 
were used except for the population size, the convergence threshold, and die number 
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of evaluations. In order to apply GENESIS to a given problem two functions must be 
provided: (i) an encoding scheme to allow for the representation of the parameters of 
a problem as a binary string and (ii) a function which measures the performance of a 
given set of parameters. This customized version of GENESIS is known as GASSER 
(Genetic Algorithm Selection of SERotypes). 

The encoding scheme employed in GASSER had the gene constructed so that the 
choice of a serotype was accounted for by a six bit codon through a lookup 
translation. In the case where, for example, a set of 10 serotypes was to be chosen by 
this method, an individual for the genetic algorithm consisted of a bit string of 60 bits. 
Each 6 bit fragment coded for a particular serotype. Having six bits to represent the 
identity of the serotype allows a choice of 64 serotypes (2^). Due to the numerics of 
translating a 6 bit number to the range from 1 to 54,10 serotypes were represented by 
two, 6-bit patterns. More elaborate encoding schemes were not better in arriving at 
the optimal solutions. 

GASSER's performance function used the minimal inhibitory concentration -
80% (MIC80) value to characterize the effectiveness of a compound against a panel 
of serotypes. The MIC80 value is that concentration required to inhibit 80% of the 
serotypes in a given screen. This value can be calculated for the set of 54 serotypes 
and for any given subset. With MICso values computed for 30 compounds against 
the set of 54 viruses and against a subset of serotypes, it is possible to measure how 
well the subset of serotypes represent the larger set by calculating a correlation 
coefficient (r^). Given a trial set of viruses, the GASSER performance function 
would calculate the MIC80 value for each of the 30 representative compounds against 
this set. The MIC80 values for the 30 compounds would then be calculated against 
the 54 serotypes. The correlation coefficient of these two sets of MIC80 values 
would be computed and returned to the GA as a measure of the performance of that 
trial set of viruses. It is ultimately this correlation that GASSER is trying to optimize; 
what subset of virues will best characterize the performance of the set of 54 viruses as 
measured by the correlation of the MIC80 values for the 30 representative 
compounds. 

A sample input file for GASSER is included in the experimental section. 

Results. 
Part I: Compound Selection. The general structure of the molecules under 
consideration is shown in Figure 1. They consisted of two heterocyclic rings in 
general connected by an arylalkyl linker of varying lengths. The substituents on the 
phenyl ring had been varied, along with the length of the linker chain and the type of 
heterocycle at each end. As previously mentioned, at the start of this analysis 769 
compounds of this general class had been synthesized. The similarity of these 
compounds was computed using both the MACCS keys and atom pairs description 
methods. The resulting similarity matrices were then analyzed by the Jarvis-Patrick 
and hierarchical clustering methods. A representative dendrogram showing the 
classification of this diverse set of molecules based on M A C C S keys is shown in 
Figure 2 and the corresponding dendrogram describing the classification based on 
atom pairs is shown in Figure 3. These dendrograms show different profiles. This 
difference may be indicative of the level of information that is provided in the 
molecular description. The atom pairs-based classification showed a more even 
distribution of the number of compounds per family and as a result was viewed as a 
better representation of the subde differences in chemical structure. The clustering of 
the atom pairs similarity by the Jarvis-Patrick method led to the identification of 28 
families from which 30 representative compounds were selected; two families were 
represented by two compounds. The selected compounds are shown in Figure 4. 
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Table I 

Human Rhinovirus (HRV) Serotypes Used for Screening 

1A IB 2 3 4 5 6 7 8 9 
10 11 12 13 14 15 16 17 18 19 
20 21 22 23 24 25 26 27 28 29 
30 31 32 33 36 38 39 41 44 47 
49 50 54 61 62 66 67 72 75 78 
86 87 89 T-39 

Figure 1. The prototypical structure synthesized for antirhinovirus activity. 
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Figure 3. A dendrogram showing the hierarchical clustering of the 769 
compounds based on a atom pairs description. 
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These 30 compounds were tested by the TCID50 assay against 54 serotypes 
generating 1620 values. The test values are shown in Table II. The decision to 
perform this amount of biological testing in support of a computational effort is 
noteworthy and represents in itself a significant impact on the project. However the 
decision of the team to provide the experiment with an additional 1512 data points 
(28 compounds χ 54 serotypes) is even more noteworthy (Table ΙΠ). This data was 
stored in electronic tables from which all GA-based selection analyses were run. 

Part II: Serotype Selection. The first issue that was explored was the size of the set 
of viruses that would be selected; would results differ if there were different numbers 
of serotypes in this selected set? To test the sensitivity of the MIC80 correlation to 
the number of serotypes in the 'primary' set, GASSER runs were performed to choose 
sets of 7, 10, 13, and 15 serotypes. AH of the runs resulted in serotypes sets which 
had MIC80 correlations greater than 0.9999. The results of this experiment are 
shown in Figure 5. Clearly, there is not a significant dependence of the results on the 
number of serotypes within the range examined. The project team then decided that a 
target of 10 serotypes in the primary screen was suitable. 

Once the decision was made that there should be 10 serotypes in the primary 
screen the production runs of GASSER could begin. Genetic algorithms use random 
number generators to select the makeup of the initial population and to influence the 
action of the selection, crossover, and mating operations. As is typical with 
algorithms that depend on random number generators, multiple runs were made of 
GASSER with different random seeds. In total, 50 production runs were performed 
each with a different random seed to ensure that a variety of possible solutions were 
explored. 

Many solution sets were found with high correlations of the MIC80S. In fact, of 
the 12,870,175 serotype sets that were generated and tested during the 50 production 
runs of GASSER a total of 583 unique solution sets were identified which had 
correlation coefficients greater than 0.9999. Hence, GASSER did what was requested 
of it, namely, to find sets of serotypes which would predict the MIC80 performance 
of the 54 serotypes. The correlation result of one of the 583 solutions is plotted in 
Figure 6. This particular set of serotypes (HRVs 3,4,5, 9,16,18, 38,66, 67, and 75) 
had an MIC80 correlation coefficient of 0.9999524. The corresponding correlation 
coefficient for the original set of 15 primary serotypes was 0.313. Thus the G A 
method had easily found a set of serotypes that was much better at predicting the 
spectrum of activity of a given compound than the set that was in use. 

The predictive ability of these solution sets of viruses was assessed by using 
them to predict the MICsos for a different group of compounds. These results, if 
positive, would provide evidence that this method could be extended beyond the 
"training set" of compounds and was of general utility. When tested against the 28 
compounds of the test set, this same solution set showed much better performance (r 2 

= 0.766, Figure 7) than did the original 15 serotypes (r 2 = 0.02, Figure 8). This set of 
viruses therefore showed a 38 fold better correlation with the MIC80S of the 54 
serotypes than did the original set of 15 screening viruses. None of these molecules 
had been used in the so-called training set and as a result these plots showed that the 
method did indeed succeed in a test of its real predictive ability. 

Discussion. 

It is important to note that a single run does not typically produce a single suggested 
set of serotypes to use. The runs produced a number of suggested sets that were all 
similar in their predictive power. This is a real advantage of this method in that it 
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Number of Serotypes 

Figure 5. A plot of the best MIC80 correlation found as a function of the 
number of serotypes allowed in the trial set. 
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MIC80S for Set of 10 Serotypes 

Figure 6. A plot of the MIC80 correlation between one of the solution sets 
found by the GASSER runs and the 54 Human Rhinovirus serotypes for the 
30 representative compounds. 
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Figure 7. A plot of the MIC80 correlation between a solution set found by 
GASSER and the 54 HRV serotypes for the test set of 28 compounds. 
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• 
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• r-sq = 0.02 

0.0 0.5 1.0 1.5 2.0 

MIC80s for Current Set of 15 Serotypes 

Figure 8. A plot of the MIC80 correlation between the original screening set 
of 15 serotypes and the 54 HRV serotypes for the test set of 28 compounds. 
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provides the user with a collection of solutions (when they exist) from which he may 
choose. 

The project team applied an additional set of criteria to the 583 good solutions in 
order to narrow the choices. The first of these criteria was the MIC80 correlation for 
the test set of 28 compounds. Since these test compounds had already been used to 
assess the predictability of the solution set of viruses, it was now possible to use this 
correlation to rank the 583 solutions sets. The other two critera were the MIC50 
correlation for both the training and test sets of compounds. Here the value is that 
concentration of the compound required to inhibit 50% of the viruses in a given 
screen. Applying these criteria narrowed the field to 16 candidate solutions. The 
final selection was based predominately on the availability or anticipated availability 
of crystallographic data for two viruses, HRV-16 (79) and HRV-3. The final chosen 
set of serotypes contains HRV-3, -4, -5, -9, -16, -18, -38, -66, -67, and -75; the set 
whose performance is demonstrated in Figures 6 and 7. This set has been established 
by the project team as the primary screen. Its use by the project team is the ultimate 
measure of the impact that this work has had. 

The new screening set has been shown to have significant predictive advantages 
over the original set of 15 serotypes. The poor correlation of the original screen may 
have had the effect of steering synthetic efforts in unproductive directions by 
providing false indications of spectrum of activity. The new screen offers a better 
tool for selecting which compounds should go on for more extensive testing and 
which compounds should not be tested beyond the 10 serotypes. 

As chemical collections becoming increasing larger and it becomes increasingly 
challenging to test each compound against every new screen, the sampling of 
compounds from a collection will become a frequent process. The use of techniques 
such as the ones described here have potential for the selection of a smaller set of 
"representative" compounds for screening purposes. It was found that the atom pairs 
method of classifying molecules yielded a much richer classification than the keys 
approach in this experiment. In this case where the resource constraints of the 
biological testing limited the number of compounds that could be tested, the sampling 
of the 769 compounds by the 30 compounds proved to be adequate. 

The G A is an optimization that has been found to be useful in a number of fields 
(70,27,22). In computational chemistry, GAs have been used on a variety of 
problems including conformational analysis and docking (23-28). The G A was used 
here because of its ability to handle large search spaces and its ability to handle 
response surfaces which are not necessarily continuous. The fact that aie G A was 
able to test 12.8 million out of a possible 10*6 possible solutions and was able to 
identify 583 which met the desired criteria of good correlation of the MIC80 values 
demonstrates that this is a practical tool. 

The final issue to be discussed is that of the impact of the computational 
methodologies on the project team. This entire process was made contingent upon 
project team involvement and "buy in". The experiments were begun only after the 
recognition by the team that the primary screen would change as a result of this work. 
There were several stages of impact by the project. First, was the agreement that the 
experiment needed to be done and that the primary screen would be replaced as a 
result. The second demonstration of impact was the expenditure of biology resources 
to test 30 compounds against the 54 serotypes. The third stage of involvement by the 
project teams was the comparison of the 583 results and final selection of the 10 
serotypes. The fourth illustration of the impact of this experiment was the 
implementation of the chosen set of serotypes as the primary screen for all routine 
project testing. This has led to the most important impact of all: the new primary 
screen has provided for more accurately focussed SAR efforts in the discovery of 
potent H R V inhibitors. 
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Conclusions. 

A novel means of choosing a subset of the biological tests for a primary screen has 
been described. The screen was selected in such a way as to have the greatest 
likelihood of correlating with the complete assay. This has been shown in the context 
of the ongoing antirhinovirus design project. The newly selected panel of serotypes 
was implemented by the project team as its primary screen. A subsequent analysis of 
the results from this screen showed that it did indeed translate to increased efficiency 
for the team with maintained reliability. The method is generally applicable for any 
system where a subset of assays would be useful as a preliminary screen if their 
cumulative results track well with the entire set of assays. It represents a new and 
unique way in which computational methods may be used to add value to the drug 
design process. 
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Experimental. 

The following is a sample input file to the GASSER program. 

Experiments = 1 
Total Trials = 1000000 

Population Size = 100 
Structure Length = 60 

Crossover Rate = 0.600000 
Mutation Rate = 0.001000 

Generation Gap = 1.000000 
Scaling Window = -1 

Report Interval = 10000 
Structures Saved = 20 

Max Gens w/o Eval = 2 
Dump Interval = 100 

Dumps Saved = 1 
Options = celL 

Random Seed = 2644486641 
Maximum Bias = 0.990000 

Max Convergence = 60 
Conv Threshold = 0.900000 

DPE Time Constant = 0 
Sigma Scaling = 2.000000 

micdb30 
1 
10 
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Chapter 11 

Semiempirical Quantum Chemical Probes 
of the Mechanism of Chorismate Mutase 

Stephen B. Bowlus 

Sandoz Agro, Inc., Research Division, 975 California Avenue, 
Palo Alto, CA 94304 

As a step in the design of novel, reaction intermediate or transition state 
analogs, we have studied the chorismate mutase-catalyzed rearrangement 
of chorismic to prephenic acid by the AMI and PM3 methods. These 
methods suggest a symmetrical transition state and an exothermic 
reaction, but the calculated activation enthalpy is significantly greater 
than experiment. Chorismic acid is conformationally mobile, with the 
crucial, diaxial conformer calculated to be 3-4 kcal above the global 
minimum. Diequatorial species are stabilized by hydrogen bonds. In
clusion of cations and hydrogen bond donors simulating active site inter
actions gives rise to alternative salt-bridged and/or hydrogen bonded 
models of the TS. The reaction appears to be accelerated by neutraliza
tion of the enolpyruvyl carboxylate, and ionization of the cyclohexadienyl 
carboxylate. These models are discussed in light of the enzyme's recently 
published x-ray structure. 

As the first, dedicated enzyme in aromatic amino acid biosynthesis, chorismate mutase 
is an attractive target for herbicide action. The enzyme catalyzes a unique reaction in 
the intermediary metabolism, the [3.3]-sigmatropic rearrangement of chorismic (1) to 

Ο 

1 L Η 2 

0097-6156/95/0589-0158$12.00/0 
© 1995 American Chemical Society 
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prephenic acid (2). Bacterial and plant enzymes have been intensively studied (7,2). 
Many mechanistic details have been elucidated or proposed, and these have formed the 
basis for the design of inhibitors (3). The reaction has also been studied by the 
extended Huckel and MINDO/3 quantum chemical methods (4,5). 

We wished to develop a qualitative model of the enzyme's action sufficient to 
propose alternatives for potential herbicides. At the outset of our investigation, the 
absence of a crystal structure rendered many aspects of the enzyme's action 
speculative. Without this knowledge, a comprehensive model was impossible; 
however, extant mechanistic studies and models provided sufficient clues for direct 
consideration of the rigid transition state. The recent report of Chook et al. (6) has 
since provided a basis for structural binding models, yet leaves several questions 
unanswered. Of particular interest to us was the role of the enzyme in catalyzing the 
isomerization to or stabilization of the reactive, diaxial conformer. Also unclear were 
the roles of potentially salt-bridging or hydrogen-bonding residues in the active site: 
residues or interactions which stabilize the transition state are inferred to contribute to 
that structure's binding affinity, and presumably to the affinity of potential reaction 
intermediate or transition state analog inhibitors capable of similar interactions. To 
obtain insights useful to the design of such inhibitors, we have used the semi-empirical 
A M I and PM3 methods to model these structures, interactions and their energetics. 

Methods 

For quantum chemical calculations, we used MOPAC ver. 6 (7). Structure building, 
visualization and management were accomplished with the Sybyl suite (8). A l l 
programs were implemented on an Evans and Sutherland ESV workstation. 

Transition states (TS) were located using SADDLE, and fully optimized using 
eigenvector following. Except as discussed, gradients were reduced to meet PRECISE 
criteria. The TS were further characterized to have exactly one imaginary root to the 
Hessian matrix and could be connected to both product and starting materials by 
intrinsic reaction coordinate calculations. 

Interesting points on the reaction coordinate were located by combined intrin
sic and dynamic reaction coordinate calculations. Use of an infinite kinetic energy 
half-life and refinement of the structure from the first energy minimum, or use of a 1 
fs half-life and refinement of the final structure gave equivalent results. For these 
refinements, Bartel's method (NLLSQ) was used exclusively: gradients were reduced 
until an apparent local minimum was approached, which was characterized by a force 
constant calculation. While the reported gradient norms were in several cases large, 
the internal coordinate derivatives and trivial mode eigenvalues were comparable to 
those of small structures with small gradient norms. Comparison of structures at 
various stages of refinement lead us to believe that further optimization would provide 
inconsequential geometry adjustments, and acceptable energy changes, relative to 
conclusions based thereon. 

Results and Discussion 

Structure of the Uncomplexed Transition State. We calculated the transition state 
using various NDDO methods which have been developed since Andrews' study (5). 
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As summarized in Table I, we obtained good agreement with the earlier study using 
MINDO/3; the geometries are nearly identical. We attribute discrepancies in the 
calculated energies to changes in the minimizers used in the two studies. 

A M I and PM3 give a strongly exothermic reaction, with a symmetrical TS. 
The symmetry of the TS is in agreement with experiment (9), which suggests C-O 
bond breaking is nearly complete while C-C bond formation has only started. Bond 
lengths of the two transition states seem to reflect a preponderance of "aromatic" TS 
character [cf. (10)] more typical of pericyclic reactions, as opposed to a putative, 
competing biradical mechanism proposed for the Claisen rearrangement. The 
calculated enthalpy of activation is much greater than the experimental value [20.7 
kcal/mol at 37° (4)]. This relatively high value is consistent with the previously repor
ted trend (10), where A M I overpredicted the activation enthalpy for a series of cyano-
substituted allyl vinyl ethers. While the absolute value is in substantial error, it serves 
as a comparative basis in further study, a point elaborated by Dewar (10,11). 

Table I. Transition State Bond Lengths (Â) and Enthalpies of Activation and 
Reaction (kcal/mol) by NDDO Methods 

Parameter Method Parameter 

MINDO/3 
Andrews This work 

MNDO A M I PM3 

Diacids 
C O Breaking 1.45 1.446 1.461 1.865 1.753 
C-C Forming 1.94 1.939 1.860 2.122 2.023 
Activation Enthalpy 59.1 60.6 57.3 40.2 40.7 
Reaction Enthalpy 10.9 13.2 -7.4 -13.1 -18.2 

Dianions 
C-O Breaking 1.42 1.429 1.458 1.823 1.774 
C-C Forming 1.99 1.977 1.906 2.119 2.078 
Activation Enthalpy 66.3 69.1 64.0 50.6 54.3 
Reaction Enthalpy 7.6 13.7 -4.2 -12.5 -11.8 

Conformational Energetics. The x-ray structure of chorismic acid has recently been 
solved (12). Comparison of the computed structures with this shows excellent agree
ment for the ring atoms and conformation. The disposition of the hydroxyl and 
pyruvyl side chain, however, differ significantly: in the x-ray structure 3, the hydroxyl 
and pyruvyl carboxylic acid groups are involved in hydrogen bonding to water of 
crystallization and neighboring chorismate molecules, while the structure 4, minimized 
in vacuo using eigenvector following, shows the two groups as internally hydrogen 
bonded. 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

6,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
01

1

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



11. BOWLUS Semiempirical Quantum Chemical Probes 161 

Chorismate has a multitude of accessible conformations, taking into account 
the torsions of the enolpyruvyl moiety plus ring inversion. Table II summarizes some 
points of interest to our study. We infer the energy surface is relatively flat; most 
important, the syw-diequatorial conformer 5 is only marginally above the global 
minimum by A M I , and is the minimum by PM3. This conformer is notable in that 
1) it is stabilized by hydrogen bonding between the 4-hydroxyl and enolpyruvyl 
carboxyl groups, and 2) it is perfectly disposed for reaction upon ring inversion. 
Gajewski (9) and others (75) have shown the rate retarding effect of the 4-hydroxyl 
group, and speculated this is due to ground-state hydrogen bonding. In fact, the 
transition state 6 for ring inversion appears to involve the breakage of the hydrogen 
bond rather than the anticipated ring flattening. The corresponding syn-diaxial 
conformer 7 is some 3 kcal/mol higher than 5, in a shallow minimum 1 kcal/mol 
below the transition state 6. 

Table II. Enthalpy of Formation for Significant Chorismate Conformers 

Conformer &Hf (kcal/mol) 

A M I PM3 

•svAz-diequatorial (5) 
α/ζίι-diequatorial 
TS - syn-ee to syw-aa (6) 
TS - anti-ee to syn-ee (rotation) 
•syn-diaxial (7) 
awf/-diaxial 

-210.45 -204.88 
-210.84 -204.62 
-206.59 -200.79 

-204.45 
-207.71 -201.43 
-206.04 -201.64 

While the energy difference between conformers 5 and 7 seems small, this is 
consistent with the 0.9-1.4 kcal/mol estimated from NMR in methanol-^ (14). In 
polar media, the stabilizing effect of the internal hydrogen bond would be attenuated; 
our in vacuo calculation reasonably gives the higher value. Qualitatively, the gas 
phase calculation is consistent with the solution experiment in showing that the 
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pseudodiaxial conformer is energetically accessible even with a stronger hydrogen 
bond. 

Introduction of groups anticipated to be involved in binding chorismate (cf 
13,15; illustrated with acetamide as a glutamine surrogate) gives rise to no significant 
change in the enthalpy of ring inversion (8 —» 9), compared to the uncomplexed case. 
The overall process, however, is rendered favorable by the enthalpy gained during 
initial binding through disruption of internal hydrogen bonds and formation of new 
bonds with the binding residue (10 -» 8). The reorganization of hydrogen bonds seen 
in 8 -» 9 does not appear to have any substantial affect on the process. A tyrosine 
surrogate gives the same pattern, albeit with less advantageous energetics (Table III). 

The diaxial conformers for these comparisons were generated by dynamic 
reaction coordinate calculations, and their refinement was rendered difficult by a 
tendency to invert to the diequatorial conformer. As in the case of non-hydrogen 
bonded species, the potential well containing the diaxial local minimum may be quite 
shallow. Hydrogen-bonding residues in the enzyme's active site may stabilize such a 
conformation; however, the stabilization would be due to constraints imparted by the 
enzyme's rigidity (6,16). 

Thus, as anticipated by Hoare (75), one potential aspect of CM's mode of 
action is facilitation of ring inversion through destabilization of the hydrogen-bonding 
network of the diequatorial conformer. This may be reinforced by further coordination 
of hydrogen bonding centers, which stabilizes the reactive, diaxial conformer. 

Table III. AMI Enthalpies of Ring Inversion 

Isomerization Enthalpy (kcal/mol) 

"Bound" "Bound" 
Syn-EE Syn-EE Syn-AA A(ARf) 

Uncomplexed ( l ) a -210.45 -207.71 +2.64 
"Glutamine"-Stabilized (16) a b -208.54 -264.00 -261.31 -2.08 
"Tyrosine"-Stabilized (17) a b -208.54 -234.01 -231.79 -1.00 

a Energies taken from the corresponding entry of Table IV. The syw-diequatorial (Syn-
EE) conformer for the enzyme-like systems is 15. 
b Acetamide and phenol ("glutamine" and "tyrosine") have calculated ΔΗ, -50.69 and 
-22.25 kcal/mol, respectively. 

Structure and Energetics of Pseudo-enzymatic Transition States. We have 
attempted to mimic the enzymatic transition state, drawing on the models of Andrews 
(17,18) and Knowles (75): we assume both carboxylic acids are coordinated to 
neighboring lysines (79), and the ethereal oxygen is an hydrogen bond acceptor from 
an active site e.g. glutamine or tyrosine. We have examined several cases to gain 
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some sense of the interactions causing significant changes in TS geometry or activa
tion enthalpy, as summarized in Tables I V and V . 

The disposition of the hydrogen-bonding prosthesis, adjacent to the pyruvyl 
carboxylate (e.g. 8), was arrived at by trial and error. In principle, coordination with 
the ethereal oxygen lone pair neighboring the cyclohexadienyl carboxylate is possible. 
In our hands, however, stationary transition states of this geometry could not be 
obtained. 

11, 12 X = Ο , Y = O H 
13, 14 X = O H , Υ = Ο 

O f the cases examined, only those involving a fully developed enolpyruvate 
anion (11) show large changes in the geometry of the TS, compared to chorismic acid. 
The structures are reminiscent of "biradicaloid" TS discussed by Dewar (10), an obser
vation which was not further pursued. The geometry moves toward that of the 
expected "aromatic" mechanism i f the enolic oxygen is hydrogen bonded to an active-
site "glutamine" (12), or i f the carboxylate is bound to a basic residue, e.g. lysine (18, 
Table V , structure not shown). 

Discussion of the calculated enthalpies of activation for the reaction must be 
preceded by the caveat that, in model systems for which relative rates have been 
measured (9), no meaningful correlation was found between the reported rates and 
calculated energy changes, simple electronic or geometric descriptors (20). A s 
previously noted, Dewar (10) has shown good correlation between computed and 
experimental activation energies for closely analogous structures; the correlation with 
more diverse structures is not addressed. The choice of reference structure for estima
tion of the enthalpy of activation is also not clear. While a fully relaxed structure, 
with appropriate groups to mimic enzymatic interactions may be more representative 
of the overall energetics of the reaction, we have elected to use the pseudodiaxial 
conformer obtained by gradient minimization of the final structure from the intrinsic 
reaction coordinate calculation. Relative to chorismic acid, enthalpy changes involving 
this structure are believed to reflect structural and electronic effects involved in bond 
reorganization. For these structures, gradients are still substantial (Table IV) , and 
although other criteria give some reassurance (see Methods), the structures may not 
strictly represent a diaxial stationary state. 

Focusing upon actual bond breakage and formation, the data of Table V sug
gest three major electronic effects: 

1) Ionization of the cyclohexadienoic acid accelerates the reaction compared 
to the carboxylic acid (compare 1, 13). Coordination of the cyclohexadienyl carbo
xylate reduces the effect of charge on this locus (13, 15), which is restored by 
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Table IV. AMI Enthalpies of Formation and Gradients for Pseudo-enzymatic 
Transition State Species 

Compound AHf (kcal/mol) (Gnorm) 

Ground State Transition State Diaxial Isomer 

Chorismic Acid (1) -210.45 (0.100) -170.61 (0.008) -207.71 (2.40) 
Pyruvyl Half-anion (11) -243.46(0.008) -197.70(0.003) -233.70 (0.93) 

"Glutamine"-Stabilized (12) -298.30 (0.009) -261.68 (0.045) -297.65 (2.49) 
Cyclohexadienyl Half-anion (13) -236.62 (0.010) -203.61 (0.004) -236.52 (0.79) 

"Glutamine"-Stabilized (14) -296.03 (0.009) -263.88 (0.016) -294.62 (2.92) 
Cyclohexadienyl Half-Salt (15) -208.54 (0.009) -171.27 (0.007) -206.04 (4.70) 

"Glutamine"-Stabilized (16) -264.00(0.010) -227.79(0.009) -261.31 (6.29) 
"Tyrosine"-Stabilized (17) -234.01 (0.006) -197.77 (0.006) -231.79 (4.40) 

Pyruvyl Half-Salt (18) -207.04 (0.009) -169.16 (0.006) -205.99 (4.26) 
Bis-salt (19) -164.98 (0.760) -200.14 (6.42) 

Pyruvate protonated (20) -226.18 (0.007) -190.45 (0.014) -223.50 (6.05) 
Tri-coordinate (21) -272.67 (0.008) -232.63 (0.009) -267.88 (6.99) 

Pyruvate protonated (22) -281.92(0.318) -246.64(0.040) -280.42 (5.13) 

Table V. AMI Enthalpies of Activation and Bond Lengths for Pseudo-
enzymatic Transition States 

System A(AHf) (kcal/mol) Bond Length (λ) 

C-C C-O 

Chorismic Acid (1) 37.10 2.122 1.865 
Pyruvyl Half-anion (11) 36.00 1.908 1.593 

"Glutamine"-Stabilized (12) 35.97 2.080 1.776 
Cyclohexadienyl Half-anion (13) 32.91 2.138 1.900 

"Glutamine"-Stabilized (14) 30.74 2.165 1.925 
Cyclohexadienyl Half-Salt (15) 34.77 2.132 1.885 

"Glutamine"-Stabilized (16) 33.52 2.143 1.905 
"Tyrosine"-Stabilized (17) 34.02 2.165 1.912 

Pyruvyl Half-Salt (18) 37.83 2.118 1.833 
Bis-salt (19) 35.16 2.129 1.852 

Pyruvate protonated (20) 33.05 2.125 1.879 
Tri-coordinate (21) 35.25 2.141 1.863 

Pyruvate protonated (22) 33.78 2.150 1.888 
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15 16 L = NHC(=0)CH 3 

17 L = C 6 H 5 0 

1 9 . 2 1 X = 0 , Y = N H 3

+ 

2 0 . 2 2 X = OH, Y = N H 2 

polarization of the ethereal oxygen bond (13, 14 and 15, 16, 17). Considering the 
relative electron withdrawing character of the carboxyl and carboxylate groups, as 
indicated by substituent constants, one would anticipate this trend from comparisons 
of terminally substituted cyano- and methoxyallyl vinyl ethers (10). The effect is here 
greater than the earlier computation would suggest, although it is more in line with the 
reported experimental values (10). 

2) Ionization of the enolpyruvate moiety has no substantial effect ( 11 ,12 ,18 ) , 

except to mask the effects of the hydrogen-bonding prosthesis. Protonation of this 
group, particularly in the presence of other, hydrogen-bonding or salt-bridging groups 
allows the full effect of the prosthesis to be seen. The relative effects of the 
carboxylic acid and carboxylate anion are just reversed from expectations from the 2-
cyano- and 2-methoxyvinyl allyl ethers (10), an anomaly we are at a loss to 
rationalize. Given the enzyme's wide pH profile, it seems unlikely that such a proton 
transfer takes place; on the other hand, the charge status of this group may not be 
crucial to the enzyme's action, a point to be included in the design of potential 
inhibitors (3). 

3) When the enolpyruvyl moiety is protonated, the prosthesis adds 1 - 2.5 kcal 
of stabilization to the TS (compare 15 to 16, 17, and 21, 22). Previous AM1-SM2 
studies (21) have attributed the aqueous acceleration of the Claisen rearrangement to 
polarization and hydration effects, arguably principally involving the ethereal oxygen. 
Simulations (22) have demonstrated explicitly the effect of hydrogen bonding to the 
ethereal oxygen. Thus, the observed stabilization through hydrogen bonds in this locus 
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is completely consistent with the known kinetics as the reaction is transferred from gas 
to solution phase. 

Comparison of the computed models vs. crystal structures. The recently published 
structures of chorismate mutase (6) bound to the transition state analog shown below 
(3), as well as a monoclonal antibody (16) raised against the same analog, permit us 
to rationalize our findings and methods against definitive criteria. 

In both structures, the binding cavity is shaped to contain only the pseudo-
diaxial conformer. Thus, any apparent contribution to rate enhancement through 
catalysis of the isomerization must lie in organization of the system during binding of 
the substrate (16). A cartoon of this entire process is difficult to envision. However, 
in the enzyme (6), the potential contributions of Arg-7 and -90 to destabilization of an 
internally hydrogen-bonded ground state should be clear, as we demonstrate for other 
hydrogen-bonding residues (Table III). 

We have recalculated portions of our model, using elements of the exper
imental structures which better mimic the environment of the reaction (Table VI). 
Introduction of water (24) and N-methylacetamide to simulate the polar contacts of the 
cyclohexadienyl carboxylate with the backbone of Lys-60 (23) shows that the previ
ously found stabilization of the TS by the carboxylate is maintained. However, if 
methylammonium is used to model the ionic contact with Arg-116 (19) in the presence 
of water (24), the more weakly bound group is displaced, a strong salt bridge is 
formed, and the stabilizing effect is attenuated as before. Thus the apparent effect of 
the charged side chain on 15 (Table V) is an artifact of our method: unconstrained 
minimizations lead to much closer contacts than observed in the enzyme [2.7 vs. 3.1 -
4.1 Â (6)]. This suggests that a more effective contact with Arg-116 might be a 

desirable feature of an inhibitor. One speculates whether the inhibitory properties of 
adamantane-l-phosphonic acid (24) may not be due in part to such an improved 
contact. 

Replacement of the glutamine or tyrosine surrogates with methylammonium to 
mimic Arg-90 (79) gives models which demonstrate the effect of ionization of 
the cyclohexadienyl carboxylate (26). Stabilization contributed by the Arg-90 
surrogate through coordination to the ethereal oxygen is obscured: as the TS is 
relaxed to the diaxial conformer, the conformational energetics become dominated by 
formation of an hydrogen bond between the 4-hydroxyl and the prosthesis (25, 27). 
Thus again, use of unconstrained minimization of these systems proves misleading. 
Inclusion of a mimic for Tyr-108 (28, 29) together with the Arg-90 mimic provides 
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25 X = Y = OH 28 Y = OH 
26 X = OH, Y = 0 29 Υ = Ο 
27 X = 0 , Y = OH 

Table VI. AMI Energies, Gradients and TS Geometries for Species Modelled 
on the X-ray Crystal Structure 

System AHf (kcal/mol) (Gnorm) A(AHf) Bond Length (A) 
(kcal/mol) 

Transition State Diaxial Isomer C-C C-O 

1 37.10 2.122 1.865 
23 -336.41 (0.050) -366.21 (4.99) 29.80 2.134 1.897 
24 -235.12 (0.029) -270.53 (2.84) 35.41 2.131 1.884 
25 -47.33 (0.009) -90.47 (1.23) 43.14 2.193 1.925 
26 -136.91 (0.14) -168.73 (1.69) 31.82 2.299 2.006 
27 -152.28 (1.09) -193.1 (4.0) 40.5 2.173 1.834 
28 -184.49 (0.094) -221.0 (10.0) 36.5 2.173 1.845 
29 -212.87 (2.67) -250.2 (9.8) 37.3 2.195 1.882 
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significant stabilization in comparison to 25 and 27. Thus, while proton transfer to the 
carboxylate is unlikely, the combination of several hydrogen bonds from Tyr-108, Arg-
7 and Arg-90 may suffice to diffuse the locally high negative charge. Unresolved in 
this instance is whether the the unusually close contact between Tyr-108 and the 
carboxylate (2.85 vs. 3.1 Â) and contacts between the Arg-90 mimic and the ethereal 
and carboxylate oxygens [2.9 and 2.6 vs. 3.1 and 3.1 Â, respectively (6)] are sufficient 
to create this anomaly, as discussed above. 

Conclusions 

The semi-empirical AMI and PM3 methods provide a qualitative picture of major 
effects in the chorismate mutase-catalyzed conversion of chorismic to prephenic acid. 
Conformational analysis reveals the potential for rate acceleration through destabiliza-
tion of the internally hydrogen-bonded diequatorial conformer, and possibly through 
stabilization of the crucial, reactive diaxial conformer. 

Calculations of various pseudo-active sites have identified two effects which 
contribute to the enzyme's acceleration of the reaction: ionization of the cyclohexa
dienyl carboxylate, and hydrogen bonding to the ethereal oxygen. These effects are 
qualitatively consistent with experimental and theoretical studies of the Claisen 
reaction. A third, potential effect, protonation (or polarization) of the enolpyruvyl 
carboxylate, may be an artifact of the method. 

There remains to be tested the central assumption of our approach: 
incorporation of structural features promoting TS stabilization into analogous, potential 
inhibitors will contribute significantly to their binding affinity, and this will translate 
into the desired, biological effect. These results bear directly on the design of new 
inhibitors in two ways: 

1) The different energies calculated for different permutations of charge and 
binding groups in the transition state suggest alternative structures for inhibitors which 
may be proposed based on more conventional tools of the medicinal chemist, e.g. 
bioisosterism. These may serve as probes better to refine the model or elucidate 
optional hypotheses, besides being target molecules in their own right; 

2) The pseudo-bound transition states establish probable spatial and vector 
relationships among putative catalytic and/or prosthetic groups and the complementary 
functional groups of the substrate and potential inhibitors. Thus, even in the absence 
of detailed knowledge of the active site, pseudoreceptors may be suitable for exploi
tation by recently developed de novo design tools. 

The major deficiency of our approach is the use of unconstrained geometry 
optimization, which leads to unrealistic, imputed motions of the binding residues, 
especially as the TS models are relaxed to the pseudodiaxial conformer of the ligand. 
These motions result in closer contacts than observed experimentally, with 
corresponding potential error in the calculated, relative energies. With the availability 
of the x-ray structures of bound transition state inhibitors (6,16) comes the opportunity 
better to model these interactions with appropriate constraints. 
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Chapter 12 

Rational Design of Novel Ergosterol 
Biosynthesis Inhibitor Fungicides 

Charles H. Reynolds and Steven H. Shaber 

Rohm and Haas Company, 727 Norristown Road, 
Spring House, PA 19477 

New ergosterol biosynthesis inhibitor based fungicides have been 
developed using computer aided molecular design. This work used a 
receptor model inferred from active analogs and cytochrome P-450 
oxidase crystal structures. The objective was to design new inhibitors 
which would bind more strongly because of stronger interaction with 
the heme iron. In order to accomplish this semi-empirical MO 
calculations, qualitative MO theory, and classical molecular mechanics 
calculations were all exploited. The MO calculations were used to 
predict bond strengths between prospective ligands and iron. It was 
hypothesized that ligands which bound more strongly to the heme 
would be better inhibitors. Comparison of the computed bond 
strengths with efficacy for a set of known inhibitors indicated that this 
hypothesis was correct. This approach was then used to screen 
compounds for synthesis, and some of the most promising compounds 
identified by the modeling study were subsequently made. As 
predicted these compounds were found to have excellent fungicidal 
activity. 

Many human (7) and plant (2) fungal diseases are effectively controlled by 
compounds which inhibit biosynthesis of ergosterol. These ergosterol biosynthesis 
inhibitors (EBIs) act by shutting down cytochrome P450 catalyzed oxidation of the 
C14 methyl in lanosterol (Figure 1). This mode of action was first demonstrated by 
Ragsdale and Sisler (3) in 1972. In the years since many labs have aggressively 
pursued EBIs (2) for both agricultural and pharmaceutical applications. Rohm and 
Haas developed two triazole based commercial EBI fungicides (4,5) which are sold 
under the trade names Systhane (1) and Indar (2). One of our goals for this program 
was to directly apply the SAR (6,7) for 1 and 2 to a new class of chemistry where 
triazole is replaced with another heterocycle. In order to accomplish this we relied 
heavily on molecular modeling. 

EBI Binding Site 

Qualitative models for the EBI active site can be constructed (8-11) from the crystal 
structure for analogous P450 oxidases with bound camphor (72). At the simplest 

0097-6156/95/0589-0171$12.00/0 
© 1995 American Chemical Society 
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172 COMPUTER-AIDED MOLECULAR DESIGN 

Ergosterol 

Figure 1. Ergosterol biosynthesis pathway. 

level this crystal structure tells us that the binding site consists of a large mostly 
lipophilic pocket with a bound Fe-porphyrin complex (heme) which is responsible for 
catalyzing oxidation of lanosterol. Three factors contribute to binding and inhibition 
of this active site: (1) hydrophobic interactions between the inhibitor and the active 
site binding pocket, (2) hydrogen bonding and electrostatic interactions between 
inhibitor and binding site, and (3) the heterocycle-Fe bond. The hydrophobic and Fe-
heterocycle bond strength are thought to be dominant. Since we had considerable 
knowledge of the SAR and QSAR (6,7) for the cyano-triazoles where R i and R2 have 
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been varied (Figure 2), we wanted to preserve this knowledge as much as possible in 
the pursuit of new heterocycles to replace triazole. The most obvious role of the 
triazole is to act as a ligand for Fe + 3, therefore, we hypothesized that a heterocycle 
which binds more strongly to Fe would be a good starting point for more potent EBIs. 
The task was to determine what these heterocycles might be. 

Figure 2. Generic Rohm and Haas triazoles. 

Modeling Iron Binding 

Computing bond strengths for organo-Fe complexes is a daunting task. In general, 
classical approaches such as molecular mechanics are not applicable because they do 
not allow for bond breaking/forming processes. In addition parameters for metals are 
virtually nonexistent. The most straightforward approach would be to compute 
relative binding enthalpies using molecular orbital methods. Unfortunately, this 
approach is extremely expensive computationally given the size of the systems 
involved and the extra difficulties incurred for transition metals. Therefore, we 
wanted to develop a method for modeling the relative ligand binding ability of 
heterocycles without including the metal explicitly. To do this we turned to simple 
concepts from perturbation theory (13). When two AOs or MOs interact they are split 
into a lower lying bonding and higher lying antibonding pair. The magnitude of the 
split is determined by the overlap and energy difference between AOs or MOs (see 
equation 1). 

β = overlap, E L = Ligand M O energy, E M = Metal M O energy 

If the energies are close the denominator in equation 1 becomes smaller, mixing 
is greater and the resulting bond is stronger. If the energies are far apart the 
denominator in equation 1 becomes larger, mixing is poorer and the resulting bond is 
weaker. This is illustrated in Figure 3 for a filled vacant interaction such as one might 
propose for interaction of the Ν lone pair in triazole with an empty M O on Fe. Thus 
all we need to estimate relative bond strengths are the overlap and difference in 
energies between the Fe and Ν MOs. Since the energy of the metal M O is invariant 
and the overlap between Ν lone pairs and Fe should be fairly constant, the only 
quantity left is the energy of the filled heterocycle Ν lone pair. This quantity can be 
computed using any of a variety of molecular orbital methods. Our first choice was 
M N D O (14) because of its speed and success reproducing experimental ionization 
potentials. 

CN 

R. 

A E = p 2 / ( E L - E M ) (1) 
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s Ο M 

• ο 

Figure 3. Orbital interaction diagram for heterocycle - metal bond. 

Testing the Model 

According to our theoretical model, heterocycles which possess high lying Ν lone 
pairs should be better ligands for Fe than heterocycles with low lying Ν lone pairs. It 
follows that heterocycles which are better ligands should lead to more negative free 
energies of binding and more potent EBIs. In order to evaluate this hypothesis we 
needed to compare computed orbital energies for the Ν lone pair with measured 
activity for a variety of heterocycles. This tests two vital links in our logic. First, that 
the Fe-N bond strength can be estimated by computing lone pair energies; and 
second, that heterocycles which bind more strongly to heme are inherently more 
active. Brown et al. (15) at Lilly published biological data (Table I) for a series of 
EBIs where the heterocycle was varied systematically while keeping the rest of the 
molecule constant (4-9). 
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This series provided a perfect test case. We computed Ν lone pair energies for 
the 3-methyl analogs of heterocycles 4-9 using MNDO (Table I). The computed lone 
pair energies are plotted against the Lilly data in Figure 4. The correlation is very 
good. Similar results are obtained using energies derived at the ab initio (16) HF/6-
31G* level (Figure 5). 

Table I. Calculated Ν Lone Pair Energies and Observed Activities (13) 
heterocycle activitya MNDO eV HF/6-31G* eV 
4 10 -10.68 -10.79 
5 10 -10.78 -11.02 
6 8 -10.90 -11.02 
7 6 -11.29 -11.50 
8 6 -11.65 -11.99 
9 4 -12.32 -12.76 
(a) Activities were reported on a 0-10 scale with 10 being most active. 

These results show that the simple M O model is predictive, and relatively 
independent of level of theory. It is important to emphasize that this approach was 
derived using basic principles of molecular orbital theory, and was not developed by 
regressing molecular properties against activity until a correlation was found. The 
correlation found in Figures 4 and 5 simply confirmed our hypothesis regarding 
ligand binding in the active site. Comparison of in-house EC75 data with M N D O 
computed lone pair energies also showed the trend of highest energy lone-pairs 
leading to highest activities (Figure 6). The correlation is poor relative to the Lilly 
data, but many compounds in this series have structures which vary in addition to 
containing different heterocycles. Therefore, one would expect significantly more 
scatter. 
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Figure 5. Correlation of HF/6-31G* lone pair orbital energies with Li l ly 
activities. 
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Another test of this approach is to apply it to compounds which have puzzling 
SAR. For example compounds 1 and 3 vary only in the structure of the triazole, but 
have very different activities. The lH-l,2,4-triazole (1) is extremely active. The 4H-
1,2,4-triazole (3) is almost totally inactive. This is surprising given the small change 
in structure, but can be explained by a M O based analysis of ligand-Fe binding. In 3 
two adjacent lone pair MOs are in a position to interact with the metal. Since these 
MOs are in close proximity and degenerate in energy they interact with each other 
and split into a symmetric low lying M O and an antisymmetric high lying M O 
(Figure 7). Interaction of the metal with the antisymmetric M O leads to poor overlap 
due to the node between adjacent lone pair p-orbitals. Interaction with the symmetric 
M O provides good overlap, but since the symmetric M O is much lower in energy the 
interaction energy is smaller. In addition, N-bridged structures significantly alter the 
geometric relationship between the heterocycle-Fe bond and the ring substituents with 
potentially significant impact on steric fit within the receptor pocket. This later 
problem might be addressed by structural changes elsewhere in the molecule, but is 
beyond the scope of the present discussion. 

Figure 7. Orbital splitting of adjacent lone pairs in heterocycles such as 4H-
1,2,4-triazole. 
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Whether due to poor geometric fit of bridged ligands or the less accessible 
nitrogen lone pair, it is not surprising that compounds such as 3 would have 
significantly different activities. We have concluded that adjacent nitrogens in the 
metal binding portion of the heterocycle are generally detrimental to activity. This 
has been observed in both five and six membered heterocycles. 

Designing New Inhibitors 

The challenge is to use the modeling results to design new ergosterol biosynthesis 
inhibitors. To do this we calculated lone pair orbital energies for 35-40 prospective 3-
methyl substituted heterocycles. This list was then ordered from best predicted ligand 
to worst. Some of the heterocycles at the top of the list were pyridines, pyrimidines 
and pyrazine (Table Π, Figure 8). Other promising heterocycles include 5-substituted 
imidazole (14) and the corresponding thiazole which have both been shown to be 
active 5 membered ring heterocycles (17,18). Pyridazine (9) was predicted to be a 
very poor ligand for the same reason the 4H-l,2,4-triazoles are poor ligands. This is 
consistent with the low activity of 9 in the Lilly screen (15). 

Table Π. MNDO Computed Ν Lone Pair Energies for 3-Methyl Substituted 
Heterocycles 

heterocycle M O e V rank heterocycle M O e V rank 
4 -10.68 2 10 -9.79 1 
5 -10.78 3 11 -10.86 5 
6 -10.90 6 12 -10.80 4 
7 -11.29 7 13 -11.59 9 
8 -11.65 10 14 -11.34 8 
9 -12.32 12 15 -11.94 11 

Figure 8. Heterocycles with favorable computed lone pair energies 
(predicted to be good ligands for Fe). 
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Based on this list one would expect direct substitution of pyridine for triazole in 
either 1 or 2 to lead to an increase in activity. Actually the opposite occurs (Table 
ΠΙ). The pyridine analogs of Systhane and Indar are much less active. This means 
that either our ligand binding approach has failed, or other factors such as fit in the 
receptor or transport have changed in a way which overcomes the stronger N-Fe 
bond. One obvious difference is changing from a five membered heterocyclic ring to 
a six membered heterocyclic ring. 

Table ΙΠ. EC90 (ppm) as a Function of Heterocycle for Systhane and Indar Analogs 
Systhane Indar 

disease triazole 3-pyridyl triazole 3-pyridyl 
W P M 1.6 30 1 >200 
W L R 6 >200 
SNW 25 150 
WPM= wheat powdery mildew; WLR= wheat leaf rust; SNW=septoria nodorum. 

In order to understand this change it is necessary to examine how going from a 
five to six membered heterocycle affects the structure of these compounds. Building 
on previous work in this area (7,8,19) we constructed a model using the structural 
relationship between the heme active site and bound camphor to infer the structural 
relationship between the heme active site and bound lanosterol. The large size of 
heme and lanosterol greatly reduce the degrees of freedom for rotating around the 
C14 methyl and make it possible to construct a reasonable structure for the active site 
heme lanosterol complex. If a solvent accessible surface is added to lanosterol the 
result is the binding site model shown in Color Plate 1. This inferred binding site can 
be used to rationalize the fit of EBI fungicides in the active site. Molecules which 
can bind to the metal and fill the hydrophobic pocket defined by the solvent 
accessible surface should be good inhibitors. Systhane (1) fits these criteria (Color 
Plate 2) and is an excellent inhibitor. The pyridine analog while a better ligand for Fe 
does not fit the binding site pocket, as can be seen in Color Plate 3. Going from a five 
to six membered heterocycle causes too much structural change. It is impossible for 
the 3-pyridyl nitrogen to adopt the proper orientation for good binding with Fe 
without forcing the hydrophobic regions well out of the binding site. This means 
good binding to the metal or good fit within the binding pocket must be sacrificed. 
Most likely the former is lost. 

We can improve this situation tremendously by simply removing the methylene 
(spacer methylene; Figure 9) between pyridine and the quaternary carbon. This small 
structural change has a large effect on fit within the putative receptor. This 3-pyridyl 
analog (16) without the spacer methylene is shown bound to our binding site model in 
Color Plate 4. Removal of this carbon leads to a 3-pyridyl compound which fits our 
binding site model just as well as Systhane. It is important to note that these 
conclusions are insensitive to the specifics of our qualitative binding site model. 
Indeed, one could make the same arguments based only on the ligand structures. For 
example, if one flexibly superimposes 1 and its 3-pyridyl derivative the resulting fit is 
poor. If, however, 1 and 16 are superimposed the heterocyclic, aryl, cyano and butyl 
regions all match very well. 

The observation that removal of the spacer methylene in 6-membered 
heterocycles should improve activity led to synthesis of compounds such as 16 and 
17. These compounds are found to have activities comparable to Systhane (Table IV) 
against many fungal diseases, and they serve as valuable leads for additional synthetic 
optimization. Thus using molecular modeling we were able to take our triazole 
chemistry and move directly to new classes of compounds which contain other 
heterocycles with a minimum of synthetic effort. This has enabled us to patent new 

NOTE : Color plates appear in color section. 
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classes of compounds (20,21) and propose other novel chemistries (for example 
compounds based on quinuclidine (10)) which might prove to be potent EBIs. 

Spacer 

Figure 9. Structural comparison of five and six membered heterocycles 
("spacer" methylene is shown in brackets). 

Het Het 

16 17 

Het = 3-pyridyl, 3-pyrimidyl 

Table IV. EC90 (ppm) as a Function of Heterocycle and Spacer for Systhane and 
Indar Analogs 

Systhane analogs Indar analogs 
disease triazole 3-pyridyl 3-pyridyl triazole 3-pyridyl 3-pyridyl triazole 3-pyridyl 

w/o w/o 
spacer spacer 

W P M 1.6 30 1 1 >200 1.5 
W L R 6 >200 50 
SNW 25 150 25 
WPM= wheat powdery mildew; WLR= wheat leaf rust; SNW=septoria nodorum. 

Conclusion 

We have used insights gained from molecular modeling to systematically design new 
EBIs. By computing relative ligand binding strengths we were able to quickly focus 
on a small number of target heterocycles for investigation. This resulted in a 
tremendous saving of experimental resources. In addition, our binding site model 
allowed us to understand and affect structural changes brought about by switching 
between five and six membered heterocycles. Without this insight we might not have 
ever made compounds such as 16 and 17 where the "spacer" methylene has been 
deleted, and a very active series would have been overlooked. 
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We can also draw a number of general conclusions about using molecular models 
in designing bioactive molecules. First, it is often possible to derive considerable 
insight into a problem using relatively simple computational methods. This is 
illustrated by our use of MNDO to model the ligand-Fe bond strength and an inferred 
binding site model to rationalize the structural effects of different heterocycles on 
binding. Although these models did not give us quantitative predicted binding 
constants, they were crucial in pointing us in the right direction. This is usually much 
more important than quantitative predictions. Our EBI project also benefited from 
close collaboration between the modeling and synthesis efforts. The cross functional 
team approach provides for maximum synergy between synthetic and modeling 
efforts. Finally, this work clearly illustrates the value of modeling for rationalizing 
SAR and guiding synthesis of new bioactive molecules. 
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Chapter 13 

Design and Synthesis of 5,6-Dihydro-4H-l,3,4-
oxadiazines as Potential Octopaminergic 

Pesticides 

Mark A. Dekeyser1, W. Ashley Harrison1, Paul T. McDonald2, 
G. W. Angle, Jr.2, Saad M. M. Ismail3, and Roger G. H. Downer3 

lResearch Laboratories, Uniroyal Chemical Ltd., Guelph, 
Ontario N1H 6N3, Canada 

2New Product Research, Uniroyal Chemical Inc., Bethany, CT 06525 
3Biology Department, University of Waterloo, Waterloo, 

Ontario N2L 3G1, Canada 

The application of Computer Aided Molecular Design (CAMD) 
tools to the process of insecticide discovery is examined as a 
key component in a biorational design of octopaminergic 
pesticides. A study of novel, conformationally restricted 
analogs of octopamine resulted in die selection of 
dihydrooxadiazines as candidates for octopaminergic pesticides. 
A series of dihydrooxadiazines containing N - H , N-methyl and 
N-fluoroethyl substituents were synthesized and tested for 
useful pestiddal properties. Certain dihydrooxadiazines showed 
activity against economically important agricultural pests and 
interacted with their octopaminergic system. 

One biorational approach in the development of safer and more 
selective pesticides is to select targets which are vital and specific to 
pest species, thereby minimizing toxicity to non-target organisms (1). 
Much attention has been directed at the biogenic amine, octopamine 
(p-hydroxyphenylethanolamine), as a valid target in the search for 
novel pesticides (2,3). Octopamine is one of the most abundant 
biogenic amines in the insect and mite nervous system (4,5). 
Compounds that stimulate octopaminergic systems in insects and 
mites have the potential to cause physiological, behavioral and lethal 
effects that often are highly compatible with integrated pest 
management (EPM) systems. The octopamine receptor has been 

0097H5156/95/0589-0183$12.00/0 
© 1995 American Chemical Society 
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184 COMPUTER-AIDED MOLECULAR DESIGN 

recognized as a useful target since the discovery of the insecticidal and 
miticidal properties of formamidines (6-9), which function as 
octopamine agonists by stimulating cyclic adenosine monophosphate 
(cyclic AMP) (10-24). Two fonnamidines, chlordimeform and amitraz, 
are œmmercial pesticides (25). 

Known octopaminergic pesticides were not discovered through 
structural modifications of octopamine, but were largely the result of 
random and biochemical screening efforts. We reasoned that it should 
be possible to design agonists which would avoid the problems of low 
bioavailability and rapid metabolic degradation associated with 
octopamine (26), thereby becoming suitable pesticide candidates. It 
was hypothesized that these problems were largely due to an 
urtoptimized lipophilic profile of the molecule. A parabolic 
relationship often exists between pesticidal activity of a compound and 
its lipid solubility. When the lipophilicity of the compound is low, this 
implies that it is poorly absorbed by a biological membrane and when 
its lipophilicity is high, it becomes trapped in the membrane and does 
not pass on to the site of action. Our strategy for avoiding these 
problems involved modulation of the physical properties of 
octopamine by modifying the ethanolamine portion of the molecule 
and introducing suitable substituents in the phenyl portion. These 
modifications were designed to enhance penetration of die cuticle and 
CNS of pest species as well as to afford resistance to oxidative 
degradation. Towards this end, we used Computer Aided Molecular 
Design (CAMD) tools to identify novel octopamine mimics as potential 
pesticide candidates. The candidates were then synthesized and 
evaluated for pesticidal and octopaminergic activities. We recently 
reported selected results from this work (27-29). 

Molecular Modeling 

Molecules were constructed using the SYBYL software package (Tripos 
Associates, St Louis, MO). The minimum energy conformations were 
determined from the MAXIMIN program. An X-ray crystallographic 
study of octopamine hydrochloride (20) showed that die molecule 
adopts a conformation whereby the ethanolamine portion is extended 
away from the phenyl ring. A minimum energy conformation of 
octopamine which closely resembled die X-ray conformation was used 
for this study. 

It is reasonable that low-energy conformers of potential 
octopamine mimics should be capable of superimposition on a 
low-energy conformer of octopamine, providing a match between 
corresponding phenyl rings and nitrogen atoms. The superimposed 
energy-minimized structures of octopamine and chlordimeform are 
shown in Figure 1. A close match between these two structures was 
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Figure 1. Superimposition of computer-generated low-energy 
conformers of octopamine and the octopaminergic pesticide 
chlordimeform (orthogonal views). H atoms have been omitted for 
clarity. 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 1

6,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
01

3

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



186 COMPUTER-AIDED MOLECULAR DESIGN 

observed. Minimum energy conformers of additional proposed 
octopaminergic pesticides, imidazoline (NC-5) and oxazoline (AC-6), 
overlayed well with octopamine (not shown). 

It has been shown that the hydroxy group in the side-chain 
portion is not critical to oct^amine agonist activity in 
phenylethanolamine analogs (22). Therefore, it appears that die 
dimethylformamidine side-chain [N=CH-N(CH3)2] of chlordimeform 
mimics die ethanolamine side-chain [CH(OH)Cr^NH2] of octopamine, 
while the 4-chloro-2-methylphenyl group of chlordimeform mimics the 
4-hydroxyphenyl group of octopamine. Obviously, these modifications 
to the octopamine molecule must result in dramatically altered 
physicochemical properties. 

A comparison of calculated nitrogen-to-phenyl distances in 
low-energy conformers and relative lipophilic properties (calculated 
Log Ρ values) of octopamine and some known octopaminergic 
pesticides are shown in Table I. On the basis of these values, a 
minimum pharmacophoric binding model was proposed for 
octopaminergic pesticide candidates. The model included a phenyl 
ring and a basic nitrogen atom separated by a distance of 3.4-3.7 
angstroms, an angle of 75-100° between the phenyl ring and side-chain 
and a calculated log Ρ value >1. 

The objective was to design an isostere with increased 
lipophilicity while retaining the functionality essential for agonist 
action. To investigate the potential of nitrogen-containing heterocycles 
to act as novel octopamine mimics related to NC-5 and AC-6 (Table I), 
we evaluated die structural similarities between octopamine and 
several 5,6-dihydro^4H-lA4-oxadiazines. Figure 2 shows the 
superimposed enei^-minimized structures of octopamine and a 
proposed dihydrooxadiazine analog (adapted from ref. 17). In this 
compound, a dihydrooxadiazine ring replaces the ethanolamine 
portion of octopamine while a bromophenyl group replaces the 
hydroxyphenyl group of octopamine. We reasoned that this type of 
compound would be a conformationally restricted lipophilic analog. 
The use of conformationally restricted analogs of octopamine 
represents an important approach towards understanding the 
molecular recognition requirements of the octopamine receptor. 
Additional analogs that are substituted on the dihydrooxadiazine 
nitrogen by a methyl and small fluorine-containing groups were 
expected to further enhance lipophilic properties without affecting the 
nitrogen-to-phenyl distance. Since chlordimeform possesses N-methyl 
groups and fluorine-containing compounds are noted for their high 
level of biological activity (22), these substituents are likely to increase 
the potential pesticidal activity of dihydrooxadiazines. The number of 
polar groups in dihydrooxadiazine analogs is less than in octopamine. 
Therefore, there are fewer sites for potential enzymatic degradation in 
these compounds compared to octopamine. 
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Table L Nitrogen-to-Phenyl Distances and LogP Values for 
Octopamine and Octopaminergic Pesticides. 

Compound N-Phenyl (Angstroms) LogP 

OH 

Octopamine 
CH 3 

C I A ^ C H , 
Chlordimeform 

N=< 3.5 3 · 2 

^ 2 n 5 

NC-5 

Ν 1 

Ace 

SOURCE: Adapted from ref. 17. 
* Estimated Using PrologP (CompuDrug, Rochester, NY) 
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H 

Octopamine (··-) Dihydrooxadiazine ( ) 

Figure 2. Superimposition of computer-generated low-energy 
conformers of octopamine and a proposed dihydrooxadiazine 
analog (orthogonal views). H atoms have been omitted for clarity. 
(Adapted from ref. 17.) 
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A comparison of calculated nitrogen-to-phenyl distances in 
low-energy conformers and lipophilic properties (calculated Log P) of 
octopamine and severed dihydrooxadiazines are shown in Table Π. 
The proposed octopaminergic pesticide candidates satisfied the criteria 
for the binding model, possessing a nitrogen-to-phenyl distance of 3.6 
angstroms, a dihedral angle between the phenyl ring and 
dihydrooxadiazine ring of 94°, a good overlay between one of its 
low-energy conformers and that of octopamine and also a calculated 
LogP>l. 

Synthesis 

Dihydrooxadiazines are known in the literature (23). Using a 
modification of the methods of (23), a series of N-H , N-methyl and 
N-fluoroethyl dihydrooxadiazines, having various substituents in the 
phenyl ring, were prepared as shown in Figure 3, in 10-60% overall 
yields (17,18). The N-H and N-fluoroethyl derivatives were prepared 
from the appropriate substituted benzoic acids which were converted, 
via benzoyl halides, to the substituted benzhydrazides then reacted 
with bromofluoroethane. The N-methyl derivatives were prepared 
from the appropriate substituted benzoic acids which were first 
converted to the substituted bertzoates, then to the substituted 
2-methyIbenzhydrazides and finally reacted with bromofluoroethane. 
The types of substituents on the phenyl ring were lipophilic groups, 
such as halogen and alkyl, rather than the polar hydroxy group found 
in octopamine. 

Pesticidal Properties 

Several dihydrooxadiazines were shown to possess potent ovicidal 
toxicity to two-spotted spider mites, Tetranychus urticae Koch, and 
tobacco budworms, Helicoverpa virescens (F.) in greenhouse screening 
following contact treatment (see Table ΙΠ). Adult female mites were 
allowed to deposit eggs on cowpea leaves for one day before treatment 
when they were removed, leaving the eggs. Plants were sprayed to 
run-off with three rates of the test compound in acetone and distilled 
water containing a wetting agent. Nine days following treatment, the 
number of hatched eggs were counted with an estimated percent 
mortality based on the number of eggs hatched on the check plants. 
Budworm eggs were immersed on cheesecloth for one minute with 
three rates of the test compound in acetone and distilled water 
containing a wetting agent. The cheesecloth samples were set on moist 
filter paper for five days when the numbers of hatched eggs were 
counted and an adjusted percent control determined based on the 
number of eggs hatched in the checks. 
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Table Π. Nitrogen-to-Phenyl Distancée and LogP Values for 
Octopamine and Dihydrooxadiazine Analogs. 

Compound N-Phenyl (Angstroms) LogP * 

H O 

O H 

0^" 

Br 

Octopamine 

I 
H 

N-H Analog 

Ν 
ι 

*r C H 3 

N-Methyl Analog 

C H J C H J F 

N-Fluoroethyl Analog 

3.7 -0.1 

3.6 1.6 

3.6 2.3 

3.6 2.5 

* Estimated Using Prolog? (CompuDrug, Rochester, NY) 
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I III II 

Reagents: 

[a] SOCI2;NH2NH2 

[b] C H 3 O H , H 2 S 0 4 ; NH2NHCH3 

[c] FCH2CH2Br# NaOH 

[d] xs FCH2CH2Br, NaOH 

Figure 3. Synthesis of N-H (I), N-Methyl (Π) and N-Fluoroethyl (ΙΠ) 
Dihydrooxadiazines. (Adapted from refs. 17,18.) 
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Table WL Pesticidal Activity of Dihydrooxadiazines on Mite 
(MIOVO) and Budworm (TBOVO) Eggs. 

% Control® 100ppm 
Compound MIOVO TBOVO 

88 97 

ι 
H 

N-H Analog 

80 14 

N-Methyl Analog 

100 

CH 2 CH 2 F 

N-Fluoroethyl Analog 

CH, 
ι 3 50 83 

Chlordimeform 

SOURCE: Adapted from refs. 18,19. 
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Pesticidal activity appeared to be most enhanced by 
dihydrooxadiazines substituted in the phenyl ring by halogens, 
especially bromine, and on the dihydrooxadiazine nitrogen by a 
fluoroethyl group. The 4-bromophenyl N-fluoroethyl 
dihydrooxadiazine showed the greatest ovicidal activity on both mites 
and budworms and was more potent than the formamidine, 
chlordimeform. A similar spectrum of biological activity to the 
dihydrooxadiazines was reported for the formamidines (24). 

Octopaminergic Action 

Using homogenates of the two-spotted spider mite and the American 
cockroach nervous system, selected pesticidal dihydrooxadiazines 
were shown to interact with octopamine receptors by stimulating 
adenylate cyclase activity (Table IV). All compounds tested caused 
elevation of cyclic AMP levels at 1 χ ΙΟ"5 M. This effect was 
concentration-dependent (not shown). The 4-bromophenyl N-H 
dihydrooxadiazine (I) showed the greatest octopamine agonist 
activity. 

The possibility that dihydrooxadiazine pesticides may interact 
with the same binding site as octopamine in mite homogenates and 
cockroach nervous system was investigated by examining the additive 
effects of (I) and octopamine in elevating cyclic AMP production at 
maximally effective concentrations. The results shown in Table IV 
indicate that the level of cyclic AMP production due to a combination 
of octopamine and (I) was not significantly different from that caused 
by octopamine alone in either preparation. Thus, it is possible that 
dihydrooxadiazines and octopamine affect the same receptor and 
elevate cyclic AMP levels through interaction with an octopamine-
sensitive receptor coupled to adenylate cyclase. However, other sites 
associated with the complex may also be important to the pesticidal 
action of dihydrooxadiazines, for example, inhibition of 
N-acetyltransferase activity, which is the main pathway for biogenic 
amine degradation (25). 

Conclusions 

Using CAMD, we identified dihydrooxadiazines as a potential new 
class of octopaminergic pesticides by evaluating the common 
structural features, lipophilic profiles and biochemical potentdes of 
established octopaminergic pesticides, including formamidines (26), 
imidazolines (27) and aminooxazolines (28). Octopamine and several 
octopaminergic pesticides have been shown to have certain structural 
similarities, including the superimposability of essential functionality 
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194 COMPUTER-AIDED MOLECULAR DESIGN 

Table IV. Octopaminergic Activity of Dihydrooxadiazines in Mite 
Homogenates and the Cockroach Nervous System. 

Cyclic AMP Production @10μΜ* 
Compound Mites Cockroach 

I 
Η 

N-H Analog (!) 

N-Methyi Analog 

CH 2 CH 2 F 

N-Fluoroethyl Analog 

Octopamine 

Octopamine + (I) 

Control 

287 1111 

184 768 

206 805 

371 2366 

386 2397 

159 440 

pmol/min/mg protein 
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(phenyl group and a basic nitrogen atom) which were separated by a 
distance range of 3.4-3.7 angstroms and a dihedral angle between the 
phenyl ring and the side-chain of 75-100°. Additionally, 
octopaminergic pesticides possessed enhanced lipophilic values 
(Log P>1) compared to octopamine. 5,6-Dihydix>-4H-l /̂4<)xad^eines 
were shown to satisfy the criteria for proposed octopamine mimics 
and, upon biological evaluation, to possess pesticidal and 
octopaminergic properties. 
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Chapter 14 

Insect Aggregation Pheromone Response 
Synergized by "Host-Type" Volatiles 

Molecular Modeling Evidence for Close Proximity Binding 
of Pheromone and Coattractant in Carpophilushemipterus (L.) 

(Coleoptera: Nitidulidae) 

Richard J. Petroski1 and Roy Vaz2 

lBioactive Constituents Research, National Center for Agricultural 
Utilization Research, Agricultural Research Service, 
U. S. Department of Agriculture, Peoria, IL 61604 

2Marion Merrell Dow, Cincinnati, OH 45242 

The driedfruit beetle, Carpophilus hemipterus (L.) is a worldwide pest of 
avariety of fruits and grains, both before and after harvest. Attractiveness 
of the male-produced aggregation pheromone is enhanced by the presence of 
a "host-type" volatile coattractant. A set of 26 compounds was used to 
explore relationships between pheromone structure and activity by 3D-
QSAR/CoMFA methods. Significant differences in aggregation pheromone 
CoMFA-coefficient contour maps were observed in the presence and absence 
of the "host-type" volatile coattractant. 

The driedfruit beetle, Carpophilus hemipterus (L.) (Coleoptera: Nitidulidae), attacks 
a large number of agricultural commodities in the field, during storage after harvest 
or in transport (1). It is also able to vector microorganisms responsible for the 
souring of figs (1) and mycotoxin production in corn (2). 

Both sexes of C. hemipterus respond to a male-produced aggregation pheromone 
(3). A wind tunnel bioassay guided the isolation of eleven all-is tetraene 
hydrocarbons, two Z-isomer tetraene hydrocarbons and one all-is triene hydrocarbon 
(3,4). The pheromone components were tentatively identified by spectroscopic 
methods then the assigned structures were proven by synthesis (3-5). Structures of 
the synthesized compounds are shown in Figure 1. Compounds A to Ν have been 
identified in the C. hemipterus pheromone blend (3,4); the additional compounds 
were prepared to explore structure activity relationships (4). 

Previous studies have shown that aggregation pheromone activity may be 
enhanced when the pheromone is used in combination with attractive chemicals 
produced by the host plant or associated microorganisms, termed host-type volatiles 
or host-type coattractants (6-9). In order to investigate relationships between the 
structure of the pheromone molecule and biological activity, as well as explore 
possible additional relationships between the coattractant and pheromone structure-
activity relationships, all compounds (A to Z) were tested for activity both with and 

0097-6156/95/0589-0197$12.00A) 
© 1995 American Chemical Society 
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198 COMPUTER-AIDED MOLECULAR DESIGN 

Figure 1. Hydrocarbon structures used in the Carpophilus hemipterus data set. 
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without adding a host-type coattractant (propyl acetate) to the bioassay treatments 
(4). The results of this previous work are summarized in Table 1. 

Individual compounds are capable of eliciting the pheromonal response, as 
opposed to an obligate requirement for a blend of compounds (4). This observation 
is consistent with a hypothesis that all the structures interact with a single 
recognition site or a family of component recognition sites having conservation of 
the required bioactive conformation of the ligands at the recognition sites. A n 
obligate requirement for a blend of compounds would indicate the action of 
distinctly different recognition sites, each with its own structural and conformational 
requirements. 

Recent advances in computational chemistry enabled us to probe quantitative 
structure-activity relationships (QSAR) in three-dimensional space. We report 3D 
QSAR studies with the aid of Comparative Molecular Field Analysis (CoMFA) 
methodology (10-13). With CoMFA, a suitable sampling of the steric and 
electrostatic fields surrounding a set of ligand molecules might provide all the 
information necessary for understanding their observed biological properties (13). 

Materials and Methods 

Data. Chemical structures (Figure 1) and the corresponding bioassay data with and 
without coattractant (Table 1) were taken from Bartelt et al. (4). The data 
corresponded to a counting of the number of beetles alighting on pieces of filter 
paper in a wind tunnel bioassay; two treatment preparations to be compared 
(pheromone versus control or pheromone plus coattractant versus control) were 
applied to pieces of filter paper, and those were hung side by side in the upwind end 
of the wind tunnel. The coattractant (propyl acetate) alone vs a blank filter paper 
control was only minimally attractive to C. hemipterus; relative bioassay activity was 
less than 5 percent (4). Two CoMFA analyses were done, one for the data without 
a coattractant (propyl acetate) and one for the data with the coattractant. 

Establishing the Conformation of Each Molecule. A computation using the 
MOP A C (14) program and the A M I Hamiltonian was done on the sequence of 
model structures shown in Figure 2 which shows the optimal geometries as well as 
the bond orders. The doubly substituted structure is twisted more than the singly 
substituted structure. The amount of derealization decreases as substituent methyl 
groups are introduced in the progression. Some conformational searching is required 
to find the low energy conformations. Hence, the single bonds in structure A were 
assumed to be rotatable with a reasonable energy barrier in terms of all states being 
populated at room temperature. 

The 3D structures represented in Figure 1 were constructed using structure A 
from the figure as a template. Structure A was subjected to conformational 
searching about the rotatable bonds using the Tripos 5.2 Molecular Mechanics Force 
Field (10). 

The minima encountered in the conformational search of compound A were 
optimized with the A M I Hamiltonian and the minimum conformation was used as 
the template. If there were any extensions made, in terms of adding rotatable bonds 
to structure A such as in structure B, a molecular mechanics force field conforma-
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ORTHOGONAL VIEW 

J00 

1 

ORTHOGONAL VIEW 

Figure 2. A sequence of model structures (2E94E,6E, 8£,-tetradecenes having 0,1, or 2 
methyl substituents on carbons 5 and 7) showing lower derealization and thus 
lowering the rotational barrier for the single bond between carbons 5 and 6 with lesser 
substitution. 
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tional search was again done on the additional rotatable bond and the minima 
obtained, optimized using the A M I Hamiltonian and the energies compared, 
choosing the minimum energy conformation again. Conformations described here 
are vapor phase. Since all the compounds examined in this study are only 
unsaturated hydrocarbons, "solvent" effect on conformations at the putative 
pheromone recognition site located on an insect antenna should be minimal. 

Superimposing the Molecules Within a Region. Once an optimal conformation 
was obtained for all the structures, the structures were then overlapped via an RMS 
fit using the atoms labeled with an asterisk in Figure 3. The overlapped structures 
are depicted in Figure 4. A region, as shown in Figure 4, was then constructed such 
that all structures fell at least 2 A 0 away from the region extents. The region only 
had carbon atoms used as probes and the lowest and highest points had the 
coordinates of 9.6170, 7.2766, -5.0496) and (10.4965, 4.2695, 6.5532) respectively. 
The points were separated at intervals of 2 A 0 along each axis. 

Comparative Molecular Field Analysis. This region containing the superimposed 
structures was utilized in a Comparative Molecular Field Analysis (CoMFA) 
experiment (Figure 5). Normally in a CoMFA, two probes are used. One probe is 
a carbon atom with no charge and the other probe is a positive charge (with no mass 
or van der Waals radius). The energy of die probe at each point of the region is 
calculated using the Tripos 5.2 force field (10). The two terms of interest in the 
force field are the 6-12 van der Waals terms which account for the London 
dispersion forces, and the coulombic terms representing coulombic forces arising 
from point charges. The positive charge probe was not used in this study because 
the π electron clouds of the unsaturated hydrocarbons in the analysis are not 
reflected by the charge on the carbon atoms. Points in the region where the energy 
of the carbon probe exceeded 30 kcal/mol were dropped from the analysis. The 
biological activities used were those listed in Table 1. CoMFA columns whose 
standard deviation was less than 2.0 kcal/mol were ignored in the calculation. This 
reduced the number of columns involved in the Partial Least Squares (PLS) 
statistical analysis (75) substantially. Also, changing the dropped columns to those 
having a standard deviation of less than 1.0 kcal/mol did not have any significant 
impact on the statistics. 

The predictive ability of both models (3D QSAR with and without coattractant) 
were evaluated using cross-validation in which the cross-validation was done using 
as many groups as there were rows except as noted. Cross-validation involves 
pretending that one of the rows does not have experimental data. The resulting 
equation is used to predict the experimental measurement for the omitted compound. 
The cross-validation cycle is repeated, leaving out one different compound until each 
compound has been excluded and predicted exactly once. The resulting individual 
squared errors of prediction are accumulated. The result of the cross-validation is 
the sum of squared prediction errors, sometimes termed the PRESS (Predictive 
Residual Sum of Squares). In PLS, the iterations are continued until the PRESS no 
longer decreases significantly. Substituting PLS, which operates on all independent 
variables simultaneously, for regression, which operates on one independent variable 
at a time, reduces the probability of accepting a chance correlation (75). 
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Figure 4. A l l optimized structures aligned using the atoms marked in Figure 3. 
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I Partial Least Squares (PLS) 

Activity = const + C1*VDW1 + C2*VDW2 + 

Figure 5. Schematic of the CoMFA steric field for structure A . 
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Conventional Λ-squared values (regression range from 0 to 1; however, the cross-
validated ^-squared values (PLS) range from negative infinity to 1.0. 

Results and Discussion 

Some synthetic analogs, which were never detected from the beetles (compounds Ο 
to Ζ in Table 1), showed activity in the bioassay (e.g. compounds Ο, Ρ, V and W). 
This observation led us to the conclusion, shared by others (16), that insect 
pheromone communication systems are not as rigid as once thought. 

Some generalizations can be made about structure-activity relationships (4): (1) 
The left-hand terminal alkyl group (as drawn in structure A) should be methyl; 
substitution of ethyl for methyl renders the compound inactive or nearly so. 
Compounds E, H , J, K , and X have low or no activity. (2) The left-hand alkyl 
branch should be methyl, but the one example with an ethyl group at that position 
(compound R) did have slight activity. (3) An ethyl group as the middle alkyl 
branch (e.g., the 5-ethyl group in compound D) also renders the compound inactive. 
(4) The right-hand alkyl branch (e.g., the 7-position of compound B) can be methyl, 
ethyl (as in compound F), or propyl (as in compound V) and still have activity; 
however, only a hydrogen in that position (compounds S and T) renders the 
compound inactive. (5) The right-hand terminal alkyl group can be methyl 
(compound A), ethyl (compound B) or propyl (compound W) and still have activity, 
but the ethyl group seems most consistent with high activity. (6) Alkyl groups in 
the 9-position (compound Y) or in the 2-position (compound Z) greatly reduce 
activity. (7) The presence of cis double bonds at any position reduces activity 
(compounds Μ, Ν, Ο, Ρ and Q). 

Another important general feature was evident from the results shown in Table 
1. Relative activity was often enhanced when each unsaturated hydrocarbon was 
separately tested in the presence of the coattractant but the proportion of 
enhancement varied from hydrocarbon to hydrocarbon tested. In some cases (e.g. 
compounds A , N , and O), activity decreased in the presence of the coattractant. 
These observations revealed a relationship between the structure of the hydrocarbon 
tested and the role of the coattractant; maximal activity in the presence of the 
coattractant was observed when the right-hand terminal alkyl group was ethyl. 
Compounds A , N , and Ο all have methyl as the terminal alkyl group. Beyond this 
observation, it is hard to imagine a more precise role for the coattractant without use 
of modern computational tools. 

Although insights can be acquired by looking at two-dimensional representations 
of structures as are shown in Figure 1, the compounds are actually three-
dimensional. A more refined examination is gained by using modern 3D QSAR 
methods. 

The predicted versus actual plots for the 3D-QSAR analyses with and without 
the coattractant show that both CoMFA models are workable predictors of biological 
activity (Figure 6). The ^-squared values and other relevant statistics for both 
analyses are reasonable (Table 2). Thus, the CoMFA results also support the 
hypothesis of either a single pheromone recognition site or (less likely) a family of 
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Predicted vs actual for structures without coattractant 

/ r 

Predicted vs actual for structures with coattractant 

Figure 6. Plots of predicted versus actual biological activity values for structures with 
and without coattractant. 
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Table 1 
Bioassay Activity for Individual Hydrocarbons a 

Relative Activity (%) 
Without With 

Hydrocarbon Coattractant Coattractant 

A 24 18 
Β 29 60 
c 21 41 
D 0 2 
Ε 2 3 
F 16 49 
G 2 8 
H 0 17 
I 0 1 
J 0 0 
κ 4 5 
L 5 5 
M 5 3 
N 11 3 
0 11 8 
P 13 17 
Q 7 4 
R 6 6 
S 0 0 
T 0 1 
u 8 1 
V 35 41 
w 14 12 
X 0 11 
Y 0 8 
z 3 4 

8 Data from Bartelt et al., J. Chem. Ecol. 18(3) 379-402 (1992). 
The coattractant was propyl acetate (20 μΙ, 10% in mineral oil). 

Table 2 
Partial Least Squares (PLS) Analysis of CoMFA Data 

(only steric field included) 

Without With 
Statistics Coattractant Coattractant 

Number of components 4 3 
Standard error of estimate 3.727 2.957 
R-squared 0.851 0.964 
R-squared (crossvalidated8) 0.490 0.811 
Standard error of prediction 6.891 6.730 

Compounds dropped from analysis V, K, W U, J, X, I 

The R-squared is related to the "PRESS" via the equation: 
(S.D. - PRESSys.D. where S.O. is the sum over all moleciles 
of squared deviations of each biological parameter from the 
mean and PRESS (Predictive Sum of Squares) is the sum over 
all molecules of the squared differences between the actual 
and predicted biological parameters (range is neg infinity to 1). 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 1

4,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
01

4

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



14. P E T R O S K I & V A Z Insect Aggregation Pheromone Response 207 

pheromone component recognition sites having bioactive conformation conservation 
in C. hemipterus. 

The main analysis tools, in terms of computer aided molecular design, are the 
coefficient plots as shown in figures 7 and 8. These plots are actually contours of 
the standard deviation times PLS coefficient [(std dev)*(coefficient)] at each point 
in the region that fall in a particular range. The field is created as the point by 
point product of the PLS coefficient and the standard deviation of energies at the 
point among all compounds in the study. The view of this field is preferred to the 
view of only the PLS coefficients field because it reduces the visual cluster of 
moderately large coefficients that arise by chance association with larger scale 
trends. 

The contours are centered at -0.7 (light gray, both Figures) and 0.14 (black, 
Figure 7) or 0.19 (black, Figure 8) with structure A embedded in the contour plots. 
These contours have the same meaning as the plots in reference 3 viz. i f the contour 
is for a region corresponding to a negative value, in that case, that region in space 
would need lower van der Waals interaction energies if a carbon probe atom were 
placed in that region or at the very most, no change would be made in that region 
for increased activity. Similarly, a positive region would prefer increased van dar 
Waals interaction energies for a carbon probe for increased activity. This can be 
derived from the equation in Figure 5. 

The positive and negative coefficient regions show that extending the structure 
A by a methylene in the direction as in structure Β puts the methylene in a positive 
coefficient region and similarly extending structure A by a methylene in the other 
direction, as in structure E, puts this latter methylene in a negative coefficient 
region. Also, extending molecule A by a methylene such as in structure Β or 
differently such as in structure C, even though both regions have positive 
coefficients, their relative values are different and thus the structural extensions have 
different consequences on the activity. 

The contour plot from the analysis of the structures with a coattractant is quite 
interesting. A new, sharp, and very well-defined most-negative region seems to 
have been created which could possibly be attributed to the coattractant occupying 
this region on the putative receptor. The region corresponding to the most negative 
coefficient region for the analysis without the coattractant is still present in the 
analysis with the coattractant. 

The field times coefficient field where the field value represents the product of 
the molecule's field energy and the PLS coefficient from the appropriate analysis 
from which they were dropped between the two analyses did not lead to any activity 
in the new negative region for the appropriate dropped molecules, thereby 
eliminating this new region as arising from the outliers not used in the analysis. 
The (field)*(coefficient) plot represents the contribution of this field for this 
molecule to its predicted activity. 

The significant change in the CoMFA contour plot with coattractant versus the 
corresponding CoMFA contour plot without coattractant suggests a close proximity 
in binding sites for the pheromone and the coattractant near the 10-position of the 
pheromone (e.g., compound A in Figure 8) If compound Β were pictured in the 
figure, the new most negative area would still reside at the 10-position, which would 
be over the methylene portion of the right-hand terminal ethyl group. An 
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Figure 8. The std. dev. * coefficient CoMFA contour plot for the structures with 
coattractant showing only structure A. 
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alternative, but less likely, interpretation of our CoMFA data would be binding of 
the coattractant at a separate binding site but affecting the binding of the pheromone 
(allosterism). This placement of the coattractant would not have been possible 
without a 3D analysis. 

If C hemipterus pheromone recognition sites have enough fluidity then it is 
theoretically possible to develop pheromone analogs that serve as species-specific 
insect control agents. Based on our CoMFA results, it might be possible that an 
oxygen atom from the coattractant (propyl acetate) resides at this new most negative 
site. It would be interesting to place an oxygen atom in a pheromone analog at this 
position in 3D space, but this has yet to be tested experimentally. 

Carefully designed pheromone analogs, or blends thereof, might surpass the 
natural pheromone in biological activity, ease of preparation, or stability under field 
conditions. Such analogs would improve our ability to monitor pest populations, 
lower pest populations by mass trapping, or lower pest populations by use of 
combinations of pheromone and either insecticides or biological control agents. It 
is also theoretically possible that pheromone perception inhibitors (antagonists) could 
be developed against C. hemipterus. Pheromone perception inhibitors could be used 
for the protection of commodities during storage or transport. 
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Chapter 15 

Predicting Activity of Protoporphyrinogen 
Oxidase Inhibitors by Computer-Aided 

Molecular Modeling 

Krishna N. Reddy, Ujjana B. Nandihalli1, Hee Jae Lee, Mary V. Duke, 
and Stephen O. Duke2 

Southern Weed Science Laboratory, Agricultural Research Service, 
U. S. Department of Agriculture, P.O. Box 350, Stoneville, MS 38776 

Protoporphyrinogen oxidase (Protox) is the primary 
site of action of herbicides belonging to at least ten 
chemical classes. Structure-activity relationships 
studies of diphenyl ether and phenopylate herbicides 
have shown the bicyclic structure of Protox inhibitors 
to approximate one half of the enzyme substrate, 
protoporphyrinogen IX. We determined the effect of a 
member of each of ten different chemical classes of 
Protox inhibitors on Protox activity and ability to 
induce protoporphyrin IX accumulation and to cause 
light-induced cellular leakage. Molecular properties 
determined with MOPAC of these compounds were 
then correlated with these biological activities by 
regression analysis. The regression equations based 
on the bulk, electronic, energy, and lipophilicity 
properties accounted for most of the variation in the 
three biological activities, and appear to be specific to 
the particular biological activity. Predictive equations 
generated by this method were then tested on 
enantiomers with chirality in the meta-substitution of 
the phenyl ring. The equations were somewhat 
predictive for active compounds, but were not 
predictive for the inactive compounds. 

The molecular target site of photobleaching herbicides such as diphenyl 
ethers (DPE) is the enzyme protoporphyrinogen oxidase (Protox) of the 
porphyrin pathway, the last enzyme common to both chlorophyll and 
heme biosynthesis (1-7). Several chemical classes of herbicides cause 

1Current address: Hazleton Laboratories, Madison, WI53707 
2Corresponding author 

0097-6156/95/0589-0211$12.00/0 
© 1995 American Chemical Society 
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rapid peroxidative bleaching and/or desiccation of plant tissues (3, 5, 7-
14). They do this by causing accumulation of massive amounts of 
protoporphyrin IX (Proto IX) (4, 6), the product of Protox, rather than the 
substrate, protoporphyrinogen IX (Protogen IX). A model that describes 
the mechanism of the accumulation of Proto IX in plant cells in the 
presence of the Protox-inhibiting herbicides has been proposed (6, 15-
17). By inhibiting plastid Protox, these herbicides induce Protogen IX 
accumulation which is exported out of the plastid envelope into the 
cytoplasm. The exported Protogen IX is oxidized by herbicide-resistant 
extraorganellar oxidases associated with the plasma membrane and 
microsomes. High levels of Proto DC build up in extraplastidic sites. 
Some of this may re-enter the porphyrin pathway, but most accumulates 
and appears to participate in a type II photoperoxidation process which 
damages plants. 

Just as the discovery of the D-l protein binding site of photosystem II 
(PS II) inhibitors spurred a better understanding of the QSAR of PS II-
inhibiting compounds (18), discovery of Protox as the binding site of a 
large number of peroxidizing herbicides has important implications for 
those interested in QSAR studies of this category of herbicides. 
However, unlike PS II inhibitors, Protox inhibitors are competitive 
inhibitors (19) that apparently mimic a portion of the substrate Protogen 
IX or transition state structure (7, 14, 20, 21). Protox inhibitors are 
perhaps the largest group of effective herbicides that are competitive 
inhibitors of an enzyme target site. Whether all classes of Protox 
inhibitors mimic the same portions of the Protogen IX molecule is 
unknown. 

These studies have demonstrated that at least three classes of Protox 
inhibitors (DPEs, O-phenyl pyrrolidinocarbamates, and O-phenyl 
piperidinocarbamates) are structurally and electronically similar to one 
half of the Protogen IX molecule, mimicking two of the porphyrin rings 
(7, 14, 20, 21). The most active analogues generally most closely 
approximate the molecular properties of one-half of Protogen IX (14, 20). 
Molecular geometry information from X-ray crystallography data of four 
Protox inhibitors (22) supports the view that they mimic one half of the 
Protogen IX molecule. Slight steric changes, as studied in chiral pairs 
with very similar molecular properties, can have overriding influences on 
Protox-inhibiting action (23). 

Several previous QSAR studies of Protox inhibitors have been 
published (reviewed in 14). Some of these studies have relied heavily on 
computational chemistry to relate structure to activity at the molecular 
or physiological level (e.g., 20, 21, 23), whereas others have related 
structure only to whole plant activity (e.g., 24-29). Whole plant QSAR 
studies can be confounded by different molecular requirements for 
uptake, metabolic degradation, and movement to the site of action than 
for activity at the molecular level. Furthermore, the DPE and probably 
other classes of Protox inhibitors can have several molecular sites of 
action (30), each with its own set of molecular requirements. 

In this chapter we provide a computational analysis of ten Protox 
inhibitors of different chemical classes, in an attempt to predict the 
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biological activities of compounds of similar structure. Molecular 
properties of these compounds are shown to be good predictors of 
Protox inhibition, accumulation of Proto IX, and herbicidal activity. 

Materials and Methods 

The Compounds. Herbicidally active members of ten classes of Protox 
inhibitors were used (Figure 1). Technical grade compounds with 95% or 
greater purity were used. The source of the compounds was as follows: 
AH 2.430 (Monsanto Co.); UCC-C4243 (Uniroyal Co.); PPG-1013 (PPG 
Corp.); oxadiazon and RH-0978 (Rohm and Haas Co.); FMC-14 and F-6285 
(FMC); LS 82-556 and M&B 39279 (Rhône Poulenc); and TNPP-ethyl 
(Otsuka Chemical Co.). 

Figure 1. Protox-inhibiting compounds used in these studies. 

Plant Material. For Protox assays and tissue bioassays, barley (Hordeum 
vulgare L. [cv. Morex]) was grown in flats in a commercial greenhouse 
substrate (Jiffy Mix; JPA, West Chicago, IL) and watered with distilled 
water. Etiolated barley plants were grown in the dark at 25°C for 6 days 
and green barley plants were grown at 25°C under continuous white light 
of 500 /imol nr 2 s 1 photosynthetically active radiation (PAR) and >9096 
relative humidity for 8 days. 

Protox Assay. Etioplast Protox preparations were made from 6-day-old, 
dark-grown barley leaves as before (13). Prior to assay, protein content 
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of plastid preparations was determined by the method of Bradford (31) 
with bovine serum albumin as a standard. Extracts were diluted to 4 mg 
protein per ml in resuspension buffer and Protox activity determined as 
before (13). 

Porphyrin Determinations. All extractions for HPLC were made under a 
dim, green light source. Samples (0.22 g of barley leaf sections) were 
homogenized and extracted as before (13). Determinations of Proto IX, 
Mg-Proto IX, Mg-Proto IX monomethyl ester, and protochlorophyll-ide 
(PChlide) were made as before (23) by HPLC with spectrofluorometric 
detection. All porphyrin compound levels are expressed on a molar 
basis per gram of fresh weight. All treatments for porphyrin samples 
were triplicated. 

Electrolyte Leakage. Tissues were treated with the herbicides as before 
(13) by cutting 5-mm barley leaf sections (approximately 0.22 g) with a 
razor blade, and then placing them in a 6-cm-diameter polystyrene Petri 
dish in 5 ml of sucrose (10 g L 1 ) , 2-[N-morpholino]ethanesulfonic acid 
(MES; 1 mM, pH 6.5) medium with or without herbicide dissolved in 
absolute ethanol. The discs were then incubated at 25°C in darkness for 
20 h before exposure to 500 μηιοί cm'2 s 1 PAR for up to 24 h. Cellular 
damage was measured by detection of electrolyte leakage into the 
bathing medium with a conductivity meter. Because of differences in 
background conductivity of different treatment solutions, results were 
expressed as changes in conductivity upon exposure to light. Previous 
studies have shown that Protox-inhibiting herbicides have no significant 
effect on cellular leakage in darkness. All treatments were triplicated. 

Binding Studies. Barley etioplasts were isolated from etiolated barley 
seedlings as described previously (21). The procedure of Tischer and 
Strotmann (32) was used to determine binding of 14C-acifluorfen to 
barley etioplasts in the presence or absence of the herbicides. Using 
previously reported methods (21), etioplast membranes were mixed with 
14C-acifluorfen and centrifuged to pellet the membranes and the amount 
of 14C-acifluorfen bound was calculated from the radioactivity in the 
pellets. 

Estimation of Partition Coefficients. Reversed-phase high-performance 
liquid chromatography (RP-HPLC) was used for the determination of 
octanol/water partition coefficients (P) of herbicides as before (20, 21, 
23, 33). 

Molecular Properties and Statistical Analysis. The molecular properties 
of herbicides were calculated using the computer software and 
procedures as described in our previous work (20, 21, 23). Three 
dimensional chemical structures were built from standard atoms and 
fragments stored in the library file of Chem-X software (Chemical Design 
Limited, Oxford, England). The structures were optimized by a 
molecular orbital program, MOPAC (Quantum Chemistry Program 
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Exchange, No. 560, Dept. Chemistry, Indiana University, Bloomington, 
IN, USA; Version 6.0) using AMI (Austin Model) hamiltonian. Molecular 
electrostatic potential maps were generated as before (21). 

Multiple regression analysis was performed to establish relationships 
between biological activities and molecular properties. Molecular 
properties of bulk, electronic, energy, and lipophilicity were considered 
independent variables and three biological activities (Protox 750, Proto IX 
accumulation, and electrolyte leakage) were considered as dependent 
variables. The RSQUARE method of SAS (SAS Institute, Inc., Cary, NC) 
was used to choose the variables for building various regression models. 

Results 

Herbicidal Activity. All ten compounds caused herbicidal damage as 
measured by electrolyte leakage from barley leaf sections (Figure 2). The 
activity varied about two-fold from the most active compound (UCC-
C4243) to the least active (LS 82-556). The leakage rate was 
approximately linear from 2 to 8 h after the beginning of light exposure. 

4000 h 
UCC-C4243. 

_1_ 
10 15 20 

Time(h) 
25 30 

Figure 2. Herbicidal activity of ten compounds, each at 100 μΜ, used in 
these studies as measured by electrolyte leakage of green barley leaf 
sections. 

In Vitro Activity and Binding Studies. The barley etioplast Protox J 5 0 

values ranged from 21 to 33,200 nM (Table I). The compounds (each at 
100 uM) caused Proto IX to accumulate from about 20- to 60-fold over 
the control levels in dark-incubated (20 h) green barley leaf sections 
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(Table I). PChilde levels were generally also increased in this assay, 
although the maximal effect was only a three-fold increase. PChlide and 
Proto IX accumulation levels were positively correlated with an rvalue of 
0.87. 

Table I. Effects of Ten Protox Inhibitors on Protox Inhibition and 
Porphyrin Accumulation 

Herbicide Protox I50 Proto DC PChlide 
(μΜ) - (nmoles/g fresh weight) -

Control 0.27 5.04 
PPG-1013 0.021 10.08 10.66 
UCC-C4243 0.030 13.36 15.89 
RH-0978 0.042 9.32 7.84 
FMC-14 0.110 7.56 5.54 
AH-2.430 0.200 9.37 10.23 
Oxadiazon 0.400 11.61 10.64 
F-6285 1.100 15.95 17.88 
TNPP-Ethyl 3.800 7.01 10.53 
M&B 39279 4.200 5.01 6.85 
LS 82-556 33.200 5.44 8.02 

There was not a good correlation between Protox J 5 0 levels and Proto 
IX accumulation. However, there was a positive correlation, although not 
quite significant at the 9596 confidence level, between Proto IX levels and 
cellular damage as measured by electrolyte leakage (Figure 3). 

2000 τ—ι ι ι ι 1 

4 5 6 7 8 910 20 
Proto FX (nmoles/g fresh weight) 

Figure 3. Relationship between Proto IX accumulated (Table I) and 
electrolyte leakage from the tissues at 2 h after exposure to light (Figure 
2). Dotted lines are the 9596 confidence intervals. 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 1

6,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
01

5

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



15. REDDY ET AL. Protoporphyrinogen Oxidase Inhibitors 217 

All ten compounds reduced the binding of 14C-acifluorfen to Protox-
containing etioplast membranes (Figure 4 provides examples), 
suggesting that they share common binding sites on Protox. Reliable 
binding constants could not be determined from these data, due to 
variability. 

ι ι 
α 

1 
I 
Ά 
S 
I 

I I ι ι ι 
- PPG-1013 / -

r ^ A F 

• ^ 1 1 1 1 1 

Τ I ι ι \s 
- UCC-C4243 Y -

~ / ^ ^ A F -

• * l 1 1 1 1 
1 1 1 I x 

- RH-0978 /u ~ 

~ / « ^ A F 
Λ ι 1 1 1 1 

1 1 1 1 1 / 

FMC-14 À " 

" • / T ^ A F " 

i l l 1 .1 1 1 

0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Free acifluorfen (1/nM) 

Figure 4. Binding of radiolabeled acifluorfen (AF) in the presence of 100 
nM unlabeled compound for four representative compounds of the ten 
compounds in this study. 

Molecular Properties. Molecular properties varied considerably between 
representatives of the different Protox inhibitor classes (Table II). There 
were large differences in molecular properties such as log P, various 
superdelocalizabilities, and dipole moments among these herbicidal 
inhibitors. The best Protox inhibitor (PPG-1013, Table I) was one of the 
most lipophilic and had the highest molecular volume and total 
electrostatic interaction. 

The molecular electrostatic potential (MEP) distributions of the ten 
compounds are presented in Plate 5. The MEP is a physical property that 
can be used as a tool for understanding and predicting biological 
recognition processes and molecular reactivity. Because of the highly 
concentrated nature of the nuclear charge, the positive MEP provides no 
clear guideline as to the interaction of nucleophiles with these regions. 

In general, all ten compounds have a strongly negative MEP 
concentrated around one of the ring structures. These negative 
potentials appear to be the major regions through which the herbicide 
molecule interacts with the Protox binding site (20, 21). Furthermore, 
these regions carry at least one substituent group that is capable of 
hydrogen bonding with a receptor site. 

NOTE: Color plates appear in color section. 
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Quantitative Structure-Activity Relationship Analysis. The molecular 
properties used in various equations are presented in Table II. Simple 
regression analysis revealed that no single molecular property gave 
equations with r2 values greater than 0.29 for any biological activity. 
Multiple regression analysis of these ten inhibitors indicated that 
combinations of the bulk, electronic, energy, and lipophilicity 
descriptors together were responsible for variation in each of the three 
biological activities. The most predictive equations using four 
independent variables are shown below: 

log Protox J 5 0 = 0.1797 - 0.00033(SN) + 0.0655 (PMEPV) - 0.1280(PMEPA) + 
0.0493(NMEPA) [1] 

F(4,5) = 4.4, s = 0.67, r* = 0.78 

log Proto IX = 0.7766 - 0.286 (SE) + 0.00004 (SN) - 0.0052(TEI) -
0.003 l(NMEPA) [2] 

F(4,5)= 17.0, s = 0.06, r* = 0.93 

log conductivity (12 h) = 5.779 + 0.0479 (log P) + 0.456 ( e H 0 M 0 > + 

0.0062(VDWV) + 0.0015 (PMEPV) [3] 
F(4,5) = 5.2, s =0.09, r 2 = 0.81 

The relationship between predicted values with these equations and 
measured values are illustrated in Figure 5. 

These equations were tested by predicting previously determined 
activities of three enantiomeric pairs of Protox inhibitors (23). The (R) 
enantiomers of these pairs were more active than the (S) enantiomers. 
The predicted values differed from experimental values by a factor of 
only 1 to 21 for active (R) enantiomers, compared to a factor of 2 to 
about 80,000 for inactive (S) enantiomers for these three biological 
activities (Table III). 

Table ΙΠ. Actual and Predicted Biological Activities of Three 
Enantiomeric Pairs of Protox Inhibitors 

Herbicide* Protox U0 Proto DC Conductivity 
MeasP PredP Meas. Pred. Meas. Pred. 

(nM) (nmol/g fresh wt) (umho/cm/g fresh wt) 
RH-4639 (S) 650 0 2.7 9.56 215 3326 
RH-4638 (R) 55 3 10.5 7.98 2604 3587 

AH 2.439 (S) 300 153 2.0 8.51 235 10188 
AH 2.440 (R) 30 41 11.4 8.20 1180 8173 

AH 2.442 (S) 520 27 0.4 9.11 373 10497 
AH 2.441 (R) 12 16 14.8 7.94 2195 8612 
afrom ref. 23. 
bMeas. = measured; Pred. = predicted from respective equations. 
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2 

I ι 

I ο 

i 
1 ο 

Equation 1 

- φ/· -

- ' · 1 1 1 

• 2 - 1 0 1 2 
Measured Log Protox 

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 
Measured Log Proto IX 

3.0 3.1 3.2 3.3 3.4 3.5 3.6 
Measured Log Conductivity 

Figure 5. Relationships between measured biological activities and those 
predicted by equations 1, 2, and 3. Dotted lines are the 9596 confidence 
intervals. 
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Discussion 

A DPE analogue (PPG-1013) and an analogue of pyrimidinedione 
(UCC-C4243) were the most active Protox inhibitors. LS 82-556, a 
pyridine derivative, was the least active as a Protox inhibitor. Oxadiazon 
and AH-2.430, a pyrazole phenyl ether, were intermediate in their 
Protox-inhibiting capacity. A similar pattern was observed with respect 
to accumulation of Proto IX and herbicidal damage. However, only the 
correlation between Proto IX accumulated and cellular leakage of 
electrolytes was good. The poorer correlation beween in vitro Protox 
inhibition and in vivo Proto IX accumulation could be due to any of 
several factors, including differential movement of the Protox inhibitor 
to the site of action, metabolic inactivation, bioactivation, or other sites 
of herbicide action. At least one class of herbicides, the thiadiazolidines, 
have been demonstrated to be bioactivated to become Protox inhibitors 
(34). Also, members of the DPE Protox inhibitors have alternative 
mechanisms of herbicide action (30). 

Few QSAR studies of Protox inhibitors have utilized compounds from 
different chemical classes. Akagi and Sakashita (35) showed that the 
four compounds, oxyfluorfen, chloro-phthalim, M&B-39279, and 
pyrimidinedione, which belong to different classes, exhibited some 
common electronic features. All showed a low value of energy of the 
lowest unoccupied molecular orbital (eL U M O). The phenyl rings on which 
the LUMO was located had non-planar groups at the para position and 
functional groups containing a lone electron pair at the ortho position. 
From QSAR analyses of various classes of peroxidizing herbicides, it 
appears that Protox activity responds primarily to the substitutional 
modifications on the phenyl ring (p-nitrophenyl in DPEs). Furthermore, 
a substitution at the meta position on the p-chloro (phenopylate) or p~ 
nitro (DPE) ring is essential for greater herbicidal activity. Hayashi (36) 
made similar conclusions regarding the meta position of the p-nitro ring 
in a QSAR study of 22 analogues of a DPE herbicide. 

In the present study, no set of three or fewer molecular parameters 
appear to be good predictors of biological activity. However, biological 
activities can be largely explained by a combination of four bulk 
(shape/size), electronic, energy, and lipophilicity parameters. In 
previous studies with one (20) or two (21) chemical families, highly 
predictive equations were possible by utilizing only two or three 
independent variables. It is interesting that log Ρ was important in 
prediction of biological activity at the physiological levels, but was not 
important in prediction of activity at the molecular level. However, 
Niclolaus et al (37) also found lipophilicity to be crucial in prediction of 
Protox-inhibiting capacity of 11 phenyltetrahydrophthalimides. 
Lipophilicity should be especially important in the activity of a 
membrane-bound enzyme such as Protox. Even when Protox is removed 
from the membrane, the relative inhibitory activities of Protox inhibitors 
with a wide range of log Ρ values remains about the same (38) 

In our two previous studies (20, 21\ the most active Protox inhibitors 
had negative MEP distributions as two distinct fields, at opposite ends of 
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the molecule. This distribution is similar to that of one half of the 
Protogen IX molecule (20). In the present study, electrostatic potential 
maps derived from atomic point charges as described in our earlier 
studies (20, 21) the negative charge distributions were not always similar 
to that of one half of the Protogen IX molecule (Plate 5). For example, 
oxadiazon had only one negative MEP distribution (Plate 5F). However, 
all ten compounds have a negative MEP distribution around a ring 
structure with at least one substituent that is capable of hydrogen 
bonding to a receptor site. 

The three equations reported in this study were obtained by 
evaluating a relatively large number of independent variables for a small 
number of compounds. As Topliss and Edwards (39) have pointed out, 
fortuitous correlations are not uncommon when the number of variables 
screened for correlations is large compared to the number of 
observations. Furthermore, the equations generated in the present 
studies do not provide the predictive power of models (r2 greater than 
0.93) based on a group of very similar phenopylate analogue Protox 
inhibitors (21). However, the major limitation of these previous models 
for only only one chemical class is that they are specific to structurally 
similar compounds and, at best, have limited applicability. 

Nevertheless, the predicted (calculated from respective equations) 
values had a mean absolute error of log 0.424 in Protox J 5 0 , log 0.031 in 
Proto IX, and log 0.049 in electrolyte leakage. The low mean absolute 
error terms indicate that molecular properties can be used as crude 
predictors of herbicidal activity. This was verified by the level of 
prediction of the biological activities of the most active members of 
enantiomeric pairs (Table III). Chirality in the meta-substitution of the 
para-nitrophenyl ring of Protox-inhibiting herbicides strongly influences 
activity at both the molecular and whole plant levels (20, 23, 40, 41). 
The poor predictive performance of the equations on the less active 
members of the pairs is not unexpected, as the molecular properties 
used in these analyses do not include steric properties. 

Ultimately, the determination of the primary and tertiary structures 
of Protox and the Protogen IX binding niche will facilitate QSAR 
approaches to herbicide design as it has for PS II inhibitors. Cloning of 
the Protox-encoding gene is the most likely means of determining 
primary structure of Protox, and Protox mutants that are resistant to 
Protox-inhibiting herbicides have the potential to reveal the Protogen DC 
binding site. The gene for Protox has been cloned in £ coli (42) and 
Bacillus subtilis (43). However, bacterial Protox appears to be more like 
the herbicide-insensitive Protogen IX oxidizing activity of plant plasma 
membranes (16, 44), and is thus probably irrelevant to herbicide studies. 
At least two laboratories are making progress toward characterizing 
eucaryotic, organellar Protox (herbicide sensitive) (38, 45). Positive 
results from their work should provide the opportunity for more 
fundamental QSAR studies of Protox inhibitors. 
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Chapter 16 

Experimental Design in Organic Synthesis 

Lawrence H. Brannigan, Mark V. Grieshaber, and Dora M. Schnur 

Monsanto Company, 800 North Lindbergh Boulevard, 
St. Louis, MO 63167 

We have previously demonstrated that the correlation of biological 
activity within a general class of compounds with the chemical 
properties of substituents can be discovered with fewer compounds than 
traditionally prepared in such a study. This smaller number of 
compounds can be chosen systematically; applying the principle of 
multiple variation so that the "training set" is representative of structural 
space. Through the use of the SYBYL programming language, SPL 
(Tripos, Inc), we have written a program that allows a chemist to use 
Experimental Design to create a training set for lead follow-up. This 
training set of molecules is created using a Plackett-Burman design as a 
template for multi-dimensional space based on variations in steric, 
electronic and lipophilic properties of molecular fragments. These 
fragments are substituents on the parent molecule representing the lead 
chemistry. The set of molecules should provide the optimal information 
for an efficient SAR study. 

In the early 1980's it became apparent that the cost in resources for the development 
of lead biologically active compounds was becoming very high. Examination of 
several areas in which we were working revealed that often several thousand 
compounds were prepared and tested to evaluate a lead chemistry. We sought to 
determine whether or not it was feasible to choose synthetic candidates more 
effectively and limit the number of compounds needed to evaluate the commercial 
potential of lead activity for a class of compounds. We sought to apply QSAR early 
in the development process to achieve this end. The result of this study was the 
development of the application of experimental design to the choice of candidates. In 
order to bring this application to the synthetic chemist and to provide the most general 
method we prepared the computer program called M O D (Multivariation in Organic 
Design) described herein. 

QSAR, Quantitative Structure Activity Relationships, has been applied to many 
retrospective studies of the biological activity of families of chemical compounds. 
The objective of QSAR is to map the variation of a biological response (biological 
activity) in structural space. The QSAR principle is extra-thermodynamic in character 
because it is the intuitive proposition that chemical structure is related to biological 
activity. QSAR arises from the Hammet1 proposition that the reactivity of organic 

0097-6156/95/0589-0225$12.00/0 
© 1995 American Chemical Society 
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226 COMPUTER-AIDED MOLECULAR DESIGN 

molecules is related to chemical structure. These relationships are often referred to as 
Linear Free Energy Relationships, LFER. The biological extension is usually 
expressed in the Hansch Equation2, equation 1. The parameter Ρ is the octanol/water 
partition coefficient for the molecule, σ is the electronic constant3 for the relevant 

A = a + bLogP+ c[LogP]2+ co+dE equation 1 

substituent, and Ε is the steric constant4 for that substituent There are a large number 
of parameters that have been developed since the 1930fs that describe the chemical 
and physical nature of hundreds of molecular fragments. These are contained in the 
Pamona College Data Base5. For our purposes LogP values have been calculated 
using a computerized version of the method of Leo, Nys and Rekker6»7. 

The most ambitious expectation of QSAR studies was that the most active 
molecules of a family might be predicted before many hundreds of compounds had 
been prepared. This predictive expectation has not been realized. QSAR has been 
applied retroactively in many cases to describe parametric dependence of biological 
activity. Much insight into the mechanism of action of many biologcially active 
chemical families has been gained through QSAR studies. We proposed the 
application of Statistical Experimental Design methods to utilize QSAR early in the 
lead development process. 

Monovariation. 

In the early 1980's we began the examination of the relationship of structure of a 
series of a-chloroacetamidochloroacetanilides8 (Figure 1) to biological activity 9. 
The goal of this QSAR study was to determine whether or not the optimum activity 
had been attained with the 300 compounds which had already been prepared. These 
relatives of the α-chloroacetanilide herbicides have the remarkable property of 
stunting the growth of turf grasses without killing the grasses while enriching the 
green texture of the turf. These compounds are referred to as "Turf Retardants". For 
this study the biological activity is measured by the decrease in vertical growth of the 
turf grass tall fescue. The activity was measured as an average of several different 
applications at a rate of 21b/acre. This activity is designated as A . Among the 300 
compounds prepared there were 110 (table 1) for which there was reliable activity 
data and 92 of these had only ortho substituents on the aromatic ring and can be 
described parametrically. A l l compounds with any substitution other than ortho were 
completely inactive. The set of 92 was chosen for this study. 

Figure 1, Structure of the a-chloroacetamidochloroacetanilides 

In the development of lead biological activity of a family of chemistry, the 
synthetic chemist tends to hold all but one of the potential subtituent positions 
constant at some set of structural features and vary only one substituent. This strategy 
is often referred to as the One Variable at a Time strategy (OVAT). The many 
compounds prepared in the acetamidomethyl-oc-chloroacetanilide series were 
prepared according to this strategy. Most of the compounds prepared, in fact, were 
those in which R2 and R3 were held constant as ethyl groups while R l was 
extensively varied. In searching for QSAR models in the diethyl series we discovered 
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16. BRANNIGAN ET AL. Experimental Design in Organic Synthesis in 

Table 1 

No. A, LogP Ri R2 R3 No. A, LogP 
cale' 

Ri R2 R3 
Turf calc* Turf 

LogP 
cale' 

1 62 3.29 H Et Et 56 72 1.97 Et Me OMe 
2* 0 4.88 Ph Et Et 57* 66 3.02 Me Me OBu 
3 70 3.22 Me Et Et 58 66 2.49 Me Me OPr 
4 0 5.65 CCI3 Et Et 59 41 0.79 Me H OMe 
5 53 4.28 n-Pr Et Et 60 63 3.02 Me Et OPr 
6 10 6.05 2-Naph Et Et 61 75 1.48 CH2OMe Me OMe 
7 56 4.05 (CH2)20Mc Et Et 62 65 2.49 Me Et OEt 
8 30 3.84 CII2C1 Et Et 63 70 1.95 CH2CHCH2 Me OMe 
9 49 4.06 CHMc2 Et Et 64 61 1.79 Cyclopropyl Me OMe 
10 0 6.40 Cyclohexyl Et Et 65 53 236 Me CHMe2 OMe 
11 46 3.82 (CH2)2C1 Et Et 66 58 2.89 Me Me O-i-bu 
12 65 3.75 Et Et Et 67 60 2.89 Me CHMe2 OEt 
13 0 4.93 CH2PI1 Et Et 68 41 3.42 Me Et O-i-bu 
14 35 4.13 CHMeCH2Cl Et Et 69* 12 0.87 Me H H 
15 65 3.52 CHCH2 Et Et 70* 28 0.88 Me OMe OMe 
16* 42 1.52 Me H Me 71 74 3.21 CH2CHCH2 Me Et 
17* 33 3.56 H Me CMe3 72 67 2.99 CH 2CH 20Me Me Et 
18 71 2.70 Me Me Et 73 65 3.22 Et Me Et 
19 49 3.82 CMcCH2 Et Et 74 70 2.84 CH2COOH Me Et 
20 60 3.49 Me Me CMe3 75 70 2.73 CH20Me Me Et 
21 63 3.09 Me Me CHMe2 76 13 4.55 CHCI2 Et Et 
22 67 2.17 Me Me Me 77 65 2.70 Et Me Me 
23 67 3.85 Cyclopropyl Et Et 78 64 2.68 CH2CHCH2 Me Me 
24 72 3.05 Cyclopropyl Me Et 79 61 2.46 CHCH2 Me Me 
25 44 2.76 Me CMe3 OMe 80 60 2.52 Cyclopropyl Me Me 
26 72 3.52 (CH2)2ÛMe Et Et 81 68 2.46 (CH2)20Me Me Me 
27* 42 4.02 Me Et CMe3 82* 0 534 (CH2)4Me Et Et 
28 30 4.00 (CH2)3C1 Et Et 83 3 7.46 (CH2)6Me Et Et 
29 40 4.02 Me CHMe2 CHMe2 84 42 4.81 (CH2)3Me Et Et 
30 74 3.74 CH2CHCH2 Et Et 85 36 2.91 CH2SMe Me Me 
31 21 5.68 CHCHPh Et Et 86 34 3.96 CH2SMe Et Et 
32 16 6.93 (CH2)7Me Et Et 87 0 5.87 CH2S(CH2)5H Et Et 
33* 37 3.69 CMeCH2 Me CHMe2 88 47 339 Me O-n-pr O-i-bu 
34* 69 3.26 CH2OMe Et Et 89 21 2.29 Me Cl Cl 
35 46 3.96 CH2CH2Br Et Et 90 36 2.23 Me Me Cl 
36 53 4.04 CHCHMe Et Et 91 3 5.52 CEt3 Me Et 
37 26 4.14 (CH2)3Br Et Et 92* 15 4.73 Cyclohexyl Me Et 
38 5 532 CH2CH2Ph Et Et 93 54 3.08 Cyclobutyl Me Me 
39 14 7.11 CHCPh2 Et Et 94 38 3.61 Cyclobutyl Me Et 
40 28 4.66 (CH2)4Br Et Et 95 8 4.99 CEt3 Me Me 
41 19 7.99 (CH2)8Me Et Et 96 43 3.17 (CH2)3C1 Me CF 3 

42* 16 4.46 CMe3 Et Et 97* 28 3.73 CHCI2 Me CF 3 

43 7 6.28 CHPh2 Et Et 98 0 6.05 CEt3 Et Et 
44 53 4.15 Me Et Et 99 44 3.67 CH2cycloprop Me Et 
45 3 4.62 CMeCH2 CHMe2 CHMe2 100* 50 2.56 H Me O-n-pr 
46 0 4.69 CHMe2 Et Et 101 5 2.63 Me CF 3 

CF3 
47 0 1.99 Me CH2CI CH2CI 102* 53 2.91 CH2CHCH2 Me CF 3 

48* 49 3.56 Me CMe3 Cl 103 34 1.15 Me F F 
49 49 1.73 Me H CF 3 104 52 2.93 Et Me CF3 
50* 62 2.40 Me Me CF 3 105 61 2.75 Cyclopropyl Me CF3 
51 60 1.44 Me Me OMe 106 21 2.59 Me Br Br 
52 62 1.97 Me Me OEt 107* 45 1.5 H Me OMe 
53* 57 1.97 Me Et OMe 108 65 2.76 H Me Et 
54 52 3.79 CH2OEt Et Et 109 50 2.47 H Me CF 3 

55* 52 3.26 CH2OEt Me Et 110 58 2.03 H Me OEt 
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three major relationships. In the first case we isolated the list of compounds in which 
R l had been varied through the lower alkyl groups, methyl through iso-butyl. The 
activity of this list was modeled very nicely by equation 2, in which Es is the Taft 
Steric constant for the alkyl substituent at R l . 

A = a + b E s equation 2 

A second list from the diethyl series in which R l was varied through alkyl 
groups substituted with electron withdrawing hetero-atoms, 0,N,Cl ,Br and S,was 
isolated. The activity of this list was modeled very nicely by equation 3, in which σ* 
is the alkyl electronic constant for the substituent at R2-

A = c + do* equation 3 

The third correlation initially discovered was the classical correlation with the 
partition coefficient, LogP, equation 4. This correlation is quadratic indicating a 
maxima in the biological response curve and an optimum LogP. Optima in LogP are 
very common in QSAR studies. 

A = d + eLogP + f[LogP] 2 equation 4 

Each of these equations were statistically valid having R2greater than 0.9 with at 
least 8 examples for each equation. These relationships suggested that the application 
of the QSAR methodology was valid for these compounds. 

General Quadratic Response Models. 

While all of the above correlations could be found in the first thirty compounds by 
the isolation of specified groups of compounds prepared in the acetamido-oc-
chloroacetanilide series a general model could not be detected with these thirty 
compounds. When the activity and fragment parameters of all 92 compounds in the 
set was subjected to stepwise multiple linear regression analysis the correlation 
equation 5 was obtained. This correlation had R 2 of 0.8, a reasonably valid equation. 
Note that this more general analysis picked up a parametric dependence which was 
not apparent in the first thirty compounds. The new dependence of activity is on the 
σ+ electronic constant for the ortho substituents and on the steric constant, E, for the 
ortho substituents. This is a reasonable expectation since there was little variation of 
the ortho groups (R2 and R3) in the first thirty compounds. They were held constant 
at the ethyl group throughout the first thirty candidates. Note also that this general 
response model does not contain any parameter for R l . The coefficients for these 
parameters were not statistically significant in the regression analysis. 

A = g + hLogP + i[LogP] 2 + jo+fc23 + ŒR23 + 1[^R23]2 + m[ER23l2 equation 5 

Because of this loss of significance of parameters of R l we performed an 
extensive bootstrapping operation on the data set. In this operation we selected 10 
different random sets of 29 candidates from the 92 in the set. Each random set was 
subjected to regression analysis. Most of the sets produced correlation equations very 
similar to equation 5, all with R 2 between 0.7 and 0.8. Parameters for R l were 
significant in several of the equations. 

The reason for the loss of significance of the R l parameters in equation 5 was in 
the structure of the variation in the set of 92 compounds. For most of the variation in 
R l the other two positions, R2 and R3 were held constant at die ethyl group. For 
most of the variation of R2 and R3 the position R l was held constant at the methyl 
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group. The parametric sampling of structural space was not symmetrical. It was 
possible that a symmetrical sampling of structural space would reveal which 
parameters are significant 

Multivariate Sampling of Structural Space 

Equations 2-4 represent limited cross sections of the biological response surface in 
structural space. Equation 5 represents a section which is overpopulated by methyl 
groups at R l and ethyl groups at R2 and R3. These correlation equations are valid for 
their appropriate cross sections, but do not give a reliable model for the whole 
response surface. 

We reasoned that a correlation equation which would model the response surface 
more accurately might be obtained by choosing a set of compounds from the 92 by 
application of an Experimental Design which would give widest variation in the three 
substituted positions. This "Training Set" was chosen by inspection of table 1 and is 
indicated in table 1 by the twenty examples with the asterisk. Regression analysis of 
these twenty candidates produced correlation equation 6. Equation 6 has R^ 0.91. 

A= a* + bLogP + c'[LogP]2 + d*o*Ri + εΈ*\ + f [ERI] 2 + g'c+K23 equation 6 

This correlation contains the original parameters for R i with only the σ + , aromatic 
electronic parameter, for R2 and R3. More importantly, the observed activity of all 
92 compounds in the full set of compounds fit equation 6 with R^ 0.78. This 
observation suggests that the 72 compounds not in the Training Set have actually 
provided no information concerning the response surface beyond that provided by 
those within the set. Therefore, it is clear that the biological response surface can be 
accurately modeled with less than 25% of the number of compounds actually 
prepared. A general application of this approach to the development of lead areas of 
chemistry could provide a strategy significantly more efficient than traditional 
strategies. This strategy also is an application of the QSAR method early in the lead 
development process. 

Experimental Design 

A systematic means of choosing a set of compounds rationally with the assurance of 
multivariation of substituents is to apply one of formal Statistical Experimental 
Design methods to the lead structure. Discussions of the application of experimental 
design strategies to the optimizaion of organic reactions and biological activity can be 
found in references 11 and 12. The first step of this method is the placement of the 
parent structure at the origin of a structural coordinate system (a Structural Matrix) in 
which the axes are the physical and chemical parameters, steric constant, electronic 
constant, and partition function. There is one set of such axes for each substitutable 
position on the parent structure. A test set, then, is chosen from die Structural Matrix 
according to one of the specific Experimental Designs. 

Consider the development of a multivariate training set for the pyrazole shown in 
Figure 2. For the purpose of demonstration assume that variation of R l , R2 and R3 
will provide an appropriate training set for development of the lead. The first priority 
is to determine the main structural effects on herbicide acitivity. Since variation of 
structural fragments at each R position carries with it a variation in three parameters 
(partition, sterics and electronics) there is a total of nine variables associated with the 
three substitutable positions. An effective design for the determination of main 
effects with large numbers of variables is the Plackett-Burman Design. Table 2 
shows a Plackett-Burman13 design matrix for two levels with nine variables. The + 
signs designate that the parameter is at a predetermined high level, the - signs 
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230 COMPUTER-AIDED MOLECULAR DESIGN 

designate that the parameter is at a designated low level. These designs are 
constructed at the high and low levels. Other designs which could be used as 
templates might contain center points, other designs are constructed at more than two 
levels. 

The parameter set most familiar to the organic chemist is Ε, σ and π , the Taft 
steric constant, electronic constant, and partition parameter respectively. The design 
is applied by using the first three columns of the matrix to represent the parameters 
for R i , the center three to represent parameters for R2 and the last three to represent 
R3 according to the scheme suggested by Clementi1 4. The design applied in this way 
is shown in Table 3. 

The next step in building the design is to assign specific structural fragments to 
the level sequences for each substitutable position, R. Table 4 shows the Taft 
constant, E , the electronic constant, σρ ( electronic constant for substituents on an 
aromatic ring), and the fragment partition function, π , for a series of common 
fragments. The range for Ε is 0 to 1.45. The parameter value of 0 is for a very small 
group. The value 1.45 is for a very large group. Values of 0.74 to 1.45 are assigned 
the + level. Values of Ε of 0.59 to 0.7 the 0 level and 0 to 0.58 the - level. Similarly, 
the range for σ is 0.78 (electron withdrawing groups with strong resonance, i.e. NO2) 
to -0.9 (electron donating, i.e. NHEt). Values of σ of 0.06 to 0.78 are +, -0.09 to 0.06 
are 0 level and -0.09 to 0.90 are -. Finally π values range from 3.79 (strongly 
lipophilic groups) to -1.80 (strongly hydrophilic groups). Values of π 3.79 to 0.54 are 
assigned level +, 0.50 through -0.03 are 0 level and -0.08 to -1.80 are The levels 
for the fragments are shown in table 4. 

The final design is prepared by substituting the fragment from table 4 for its 
matching sign sequence in table 3. The resulting structural design is shown in table 5. 
The compounds suggested by the matrix are prepared and evaluated with respect to 
the response variable of interest. The combined design and response variable matrix 
is then evaluated by regression analysis (or other appropriate method). 

This particular design is rather robust in that substitutions are made with highly 
varied fragments. It is a first level design. After this design has identified the main 
variables a more finely tuned design can be generated by the above method. Most 
likely only 3 or 4 of the variables would emerge from the evaluation as main effects. 
A second level design would include only those main variables. This second level 
design would most likely be done with one of the factorial designs which can detect 

»?2 

C H 3 

Figure 2, Structure of a Pyrazole Training Set 
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Run# X i 
3 
7 
2 
5 
11 
12 + 
9 + 
6 
4 + 
10 + 
1 + 
8 + 

X2 X3 
+ 

+ 
+ 
+ + 

+ 
+ 

+ 

+ + 
+ + 

Table 2 

X4 X5 
+ 

+ 
+ + 

+ 
+ 
+ + 

+ 

+ + 
+ 

X6 X7 
+ + 

+ 
+ 

+ 

+ 
+ 
+ + 

+ 
+ + 

X8 X9 

+ 

+ + 
+ 

+ 
+ 

+ + 
+ 

+ + 
+ 

Table 3 

Cp R l R2 R3 
d 

No. 
E l σι πΐ E2 E3 σ3 

3 - - + - + + + - -
7 - - - + - - + - + 
2 - + - + + + - - -
5 - + - - + - + + + 
11 - + + + - - - + -
12 + - + + + - - - + 
9 + + - - - + - - + 
6 - - + - - + - + + 
4 + - - + - + + + -
10 + + + - - - + - -
1 + + + + + + + + + 
8 + - - - + - - + -

Table 4 

R Ε σ ρ π R E σ Ρ π 
COOH 1.45 0.45 -1.30 CHMe2 0.76 -0.15 1.58 

COOMe 1.45 0.45 -0.96 OCHMe2 0.75 -0.45 -0.45 
Νθ2 1.39 0.78 -1.30 CH2OPI1 0.74 0.07 1.49 
CC13 1.38 0.33 1.38 CH2CH2PI1 0.70 -0.12 3.79 
NEt2 1.37 -0.90 -0.16 CH 2Ph 0.70 -0.09 2.22 
CMe 3 1.24 -0.20 1.98 N H 2 0.35 -0.66 -1.70 
NMe2 0.43 -0.72 -1.00 OH 0.32 -0.37 -1.80 

CN 0.40 0.66 -1.50 F 0.27 0.06 -0.61 
NHMe 0.39 -0.84 -1.60 O-Pentyl 0.58 -0.34 0.83 
OMe 0.36 -0.27 -1.20 C(CH2)Me 0.57 0.05 1.03 
CF3 0.91 0.54 0.06 Et 0.56 -0.15 1.18 

C H 2 C N 0.89 0.01 -0.97 Cl 0.55 0.24 -0.17 
Cycclohexyl 0.87 -0.22 2.77 CHMeOH 0.50 -0.07 -1.00 

CHC12 0.81 0.19 0.68 OEt 0.48 -0.24 -0.76 
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232 COMPUTER-AIDED MOLECULAR DESIGN 

parameter interactions and curvature of the response variable within the structural 
space examined. 

It is clear that several of the suggested substitutions will produce very difficult 
synthetic problems and suggest molecules which are unacceptably reactive. For 
example one might hesitate before preparing the α-keto ester suggested by compound 
9 in table 6. One would also not likely prepare acid chlorides or flourides as might be 
suggested by the design. In addition one must take into consideration properties of 
the suggested fragments which may dominate over the design parameters. For 
example, compound 12 would contain a methyl ester on the aromatic ring. Under 
many biological conditions this moiety would be subject to hydrolysis and this may 
compete with the response variable of interest. 

It is for these reasons that these designs must not be prepared from limited lists of 
fragment data such as table 4. In order to provide the method with the most robust 
potential the design method was computerized as discussed below. The computer 
gives easy access to the several thousand fragment parameters available from the 
M E D C H E M 5 data base. The opportunity to use structural parameters other than 
those shown in table 4 is also in the computerized design. 

The S Y B Y L M A C R O : design generation 

The underlying basis of the M O D program is the on the fly generation of a 
suitably sized P L A C K E T T - B U R M A N matrix. The size of the generated matrix is 
based on the the number of substituent positions selected for variation. These 
matrices have special properties and problems. Especially useful is the property that 
allows creation of equally valid matrices by rotating the row positions or column 
positions (so long as these are done as separate operations). This allows an 
experimenter to generate different designs for the same number of parameters. The 
formulae that generate these matrices with their special properties result in 4n rows 
and 4n-l columns. Thus the number of runs which are required by these designs are 
4,8,12,16 etc. and the number of parameters respectively are 3,7,11,15 etc. Since the 
number of parameters which will be examined in the MOD strategy are usually (but 
not restricted to) three ( Ε, σ and π) per substitutable position the M O D designs must 
accomodate 3,6,9,12 etc. parameters. To achieve this, the number of columns in next 
highest design is truncated in MOD. (Truncation is not possible for the number of 
rows or structures). Additionally, problems may result from confounding effects for 
certain matrices such as the 16X15. Where these are a problem, the next higher 
matrix is truncated. 

It should be pointed out at this stage that the assumption that the parameters 
represent main effects and are not confounded is an expedient oversimplification that 
must be addressed outside the the macro. A second useful, but not necessarily valid 
assumption is the additivity of fragment properties. It is essential to apply standard 
modeling approaches to the 3D structures created by the design to verify their 
properties. A S Y B Y L database (.mdb) containing the structures is produced by the 
macro for this purpose and for future QSAR/CoMFA analysis15. 

To actually generate the design matrix, it is necessary to select the desired 
parameters and assign high and low threshold values. The S Y B Y L spreadsheet 
containing the parameter data has in fact about 58 parameters for over 1500 
fragments5.. Each parameter has a range of values. Not all fragments have data for all 
parameters. The parameters mentioned throughout the text are used as default 
parameters and assigned default threshold values that allow all possiblestrict design. 
While the macro does not use a three level design, it is useful from the standpoint of 
synthetic feasibility to have that middle level. If none of the +++ level fragments 
turn out to be synthetically reasonable for a given molecule, for example, having a 
reserve set of fragments of ++0, +0+ and 0++ gives the user more control over 
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Tabel5 

R Ε σ π R E σ 
COOH + + - CHMe2 + -

COOMe + + - OCHMe2 + -
N 0 2 + + - CH2OPh + + 
CC13 

+ + + CH 2 CH 2 Ph 0 -
NEt 2 

+ - - CH 2Ph 0 0 
CMe3 + - + N H 2 - -
NMe 2 - - - OH - -

CN - + F + 
NHMe - - - O-Pentyl - -
OMe - - - C(CH2)Me - + 
CF 3 

+ + 0 Et - -
CH 2 CN + 0 - Cl - + 

Cyclohexyl + - + CHMeOH - 0 
CHC12 + + + OEt - + 

π 

Table 6 

Cpd No. Rl R2 R3 
3 Et C(CH2)Me NEt 2 

7 NMe2 NEt2 CHMe2 

2 OEt CH2OPh OH 
5 OEt F CCI3 

11 C(CH2)Me NEt2 F 
12 CMe3 COOMe Et 
9 COOMe Et O-Pentyl 
6 Et Et C(CH2)Me 
4 NEt2 CHMe2 COOMe 
10 CH2OPh N H 2 OCHMe2 

1 CH2OPh CCI3 CH2OPh 
8 NEt2 F F 
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234 COMPUTER-AIDED MOLECULAR DESIGN 

deviations from the three way combinations of + and The user may adjust the 
values as desired. The thresholds are used to sort the molecules into two or three 
levels. If the high and low thresholds are equal there are two levels. If they are not, a 
third, 0 level is also created. 

Using the experimental design program 

To generate an experimental design within S Y B Y L 6.0 1 6 (or later versions) the 
synthetic chemist needs to draw the lead molecule to be developed. Since the program 
requires a hydrogen to mark the positions at which substituents will be varied, editing 
may be needed. The chemist should consider very carefully how the substituent 
positions are defined in order to ensure synthetically feasible diversity. If, for 
example, the parent molecule contains an ester, the chemist should probably replace 
not the alkyl group, but the O-alkyl group instead so that the ester can be varied as 
different types of carbonyl derivatives. Once the parent structure is on screen, the 
chemist is ready to run the macro, which is accessible through a customized S Y B Y L 
menu or via command mode. The program is available as "design synthesis" in our 
in-house custom menu. The R-positions to be varied are selected using the mouse and 
are automatically highlighted (PLATE 6). At this point, the parameters of interest and 
their + and - threshold values are selected to generate the design matrix. The number 
of molecules needed for the design is reported to the user. Next, the program now 
puts the parent structure on screen, indicates the position to be substituted and 
displays the fragment set that best matches the design matrix pattern of high and low 
associated with that R-group for the first row (PLATE 7). The matrix pattern is 
appended to the fragment name. 

If the user desires to choose the fragment with criteria based on parameter values, 
an option is provided to view these values on screen. In the case where no fragments 
are synthetically feasible or desirable, the chemist has two options. The first option is 
to deviate from the matrix high/low pattern by specifying a new one using the 
RESTRICT CRITERIA option from the menu. This allows the user, for example to 
replace +++ with another pattern such as 0++ to find more desirable substituent 
fragments. Alternately, the user may opt to choose a fragment using the 
F U L L J F R A G M E N T LIST option. A menu of all fragments and their parameter 
criteria pattern is accessed through this option. Both of these scenarios are deviations 
from the strict design and the exact deviation is noted by the macro in report output. 
Each substituent on each molecule is selected iteratively in this manner until all the 
molecules have been created. The report output containing the design matrix, 
deviations, the selected substituents, and a list of 2D structures is then generated and 
printed for the user. The 3D structures are saved as a S Y B Y L database for further 
modeling. 

The ability to edit molecule design sets was found to be essential for synthetic 
feasibility. Hence, the user may edit a design when it is created or in a latter S Y B Y L 
session. The user simply selects the option of editing an "old" design and selects the 
molecule(s) to be edited. It is then necessary to select the position(s) on that molecule 
to be modified. The substituent to be replaced is highlighted in red and the program 
proceeds as in creation mode with the original matrix criteria and fragment menus 

Conclusion 

The traditional application of experimental design strategies has been in areas in 
which the independent variables are continuous, that is can be controlled at any value 
within the parametric domain. However, this is not the case with the structural 
parameter space. The various parameters which are used to describe chemical 
structures are not continuous and progress from low values to high values at irregular 

N O T E : Color plates appear in color section. 
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intervals. A cubic section of a formal design will show all parameter levels at the 
corners of the parameter space. Plackett-Burman designs, when used with continuous 
variables, cannot reveal parameter interactions or curvature in the response surface. 

In MOD designs experimental points will be distributed through parametric 
space with clustering near the corners of the formal design. The tightness of the 
clustering will depend on the threshold values used to determine the design levels for 
the fragments. TTie more restrictive the threshold values the closer the level points 
will be to the comers of the section. With less restrictive thresholds the design will 
contain points toward the center of the design. The designs, then, take on some of 
the character of multiple level designs. This property may give the potential for the 
revelation of curvature of the response surface and parameter interactions. 

The set of classical parameters suggested in the examples discussed were chosen 
because most synthetic chemists will be familiar with them and with their meaning. 
These parameters are somewhat co-variant, not fully independent. The MEDCHEM 
data base from which they were obtained contains many other parameters. Other 
parameters may be more appropriate for specific lead development. 
Acknowledgements: The authors are indebted to Svante Wold and Sergio Clementi 
for their comments, critisisms and suggestions in the development of the MOD 
program. We owe a special thanks to David L. Duewer for his encouragement and 
technical advice since 1982. 
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Chapter 17 

Use of Predictive Toxicology in the Design 
of New Chemicals 

Vijay K. Gombar and Kurt Enslein 

Health Designs, Inc., 183 East Main Street, Number 1050, 
Rochester, NY 14604 

While many appl icat ions of computer-ass i s ted 
techniques involve the design of molecules with 
maximum biological activity, this chapter addresses a 
different criterion of molecular design. We consider 
moni tor ing toxicity as the design process br ings 
structural changes because the most desirable chemical 
is not necessarily the one with maximum activity but 
rather the one with maximum activity-to-toxicity ratio. 
The computer-assisted technique for predicting toxicity 
profiles described here relies on robust and cross-
validated quantitative structure-toxicity relationship 
(QSTR) models developed from experimental ly 
determined animal toxicity data. The technique, as 
embedded in the software package T O P K A T , first 
confirms whether the query chemical lies inside, near the 
boundary of, or outside the optimum prediction space 
(OPS) of a QSTR model in order to assess the reliability of 
predictions. Currently, such toxicity measures as rodent 
carcinogenicity, mutagenicity in Salmonella typhimuriimu 
teratogenicity, chronic lowest observed adverse effect 
level (LOAEL) and maximum tolerated dose (MTD), acute 
rat oral L D 5 0 and mouse inhalation L C 5 0 , and aquatic 
E C 5 0 and L C 5 0 can be estimated by u s i n g these 
techniques. The methodology is explained here using 
developmental toxicity (DT) data. 

Widespread applications of powerful computers with tools for 
generating life-like graphics have attracted the attention of chemists 
(I). Among other uses of computers, the possibility of assessing 
certain molecular properties before even the molecule is synthesized 
is, perhaps, the most beneficial. For instance, by displaying on a 
hign-resolution monitor a three-dimensional picture of the 
established geometry and the electronic structure of a binding site 
in a protein, a chemist can dock possible ligands or design de novo 

0097-6156/95/0589-0236$12.00/0 
© 1995 American Chemical Society 
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some favorably fitting ligands before selecting the one to synthesize 
(2-4). This computer-aided technique has been applied to design 
molecules possessing a desired type of activity. A chemical so 
designed, however, may not be worth anything if it turns out to be 
toxic. Therefore, rapid and reliable, preferably computer-assisted, 
assessment of toxicity associated with any molecular structure 
should be an integral part of any molecular design program. With the 
advent of solid-state synthetic chemistry and with growing 
applications of combinatorial chemistry to create large libraries of 
small (non-protein) molecules (5), the need for large scale screening 
for toxicity is pressing. Also, federal agencies responsible for 
administering risk assessment should be able to conveniently and 
rapidly assess toxicity for timely assessment of health and 
environmental risks of existing and new chemicals, particularly in 
times of shrinking resources as risk assessment is becoming a social 
priority. 

In principle, if the mode of action/mechanism by which a toxic 
response is elicited or the structure of the site at which a toxicant will 
bind were known, the computer-assisted technique, as applied for 
optimizing the activity, could be used for minimizing toxicity. 
Unfortunately, toxicity is a very complex endpoint resulting from a 
multitude of causes. Two chemicals, for example, having extremely 
low and identical L D ^ value (acute median lethal dose) may produce 
altogether different acute effects. Similarly, two carcinogenic 
chemicals may produce dose-related neoplastic lesions of different 
morphology, in different organ systems, at different sites. 
Consequently, we have used the linear free energy related (LFER) 
approach to develop QSTR models (3). These statistically significant 
and cross-validated models, along with the data bases from which 
these models are developed, are installed in the TOPKAT software 
package (7) for computer-assisted assessment of toxicity associated 
with a molecular structure. 

Since the QSTR models in TOPKAT, or for that matter any 
quantitative structure-property relationship (QSPR) models, are 
equations, all it takes to predict the value of the response variable 
(property/toxicity) is to provide the values of the set of predictor 
variables (structure descriptors). Every predicted value, however, may 
not be reliable. Therefore, we employed algorithms for performing 
various checks to ascertain whether the query structure falls within 
the optimum prediction space (OPS) of the model being used for 
toxicity assessment. Some of the mammalian and aquatic toxicity 
indicators which can be currently assessed by the TOPKAT program 
are: 

Toxicity Indicator Assay Protocol 

Carcinogenicity 2-year study on both sexes of rat and 
mice 

Mutagenicity Ames test 
Teratogenicity With or without maternotoxicity 
LOAEL Chronic, oral, rat 
LDgQ Acute, oral, rat 
L C R Q Acute, flow-through, fathead minnow 
Skin/Eye Irritancy Draize test 
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In the following sections we describe the underlying methodology 
used. As an example, we have chosen the QSTR model for 
developmental toxicity (DT). After a brief discussion of the steps in 
building data bases, structure quantification, and developing robust 
statistical models, we exemplify the operations of the software for (I) 
assessing developmental toxicity potential (DTP), and (ii) for 
validating the assessed DTP. 

Data Base Building 

Obviously, the first requirement for developing a QSTR model for a 
desired measure of toxicity is the compilation of results of bioassays, 
e.g., the results from the Salmonella typhimurium histidine reversion 
assay for a QSTR model predicting mutagenicity. It is, however, very 
critical that the answer sought from a QSTR model be clearly defined 
because this determines which experimental results can be included 
in the data set and which should be excluded. For instance, if a 
researcher expected to predict whether the chemical he/she is 
designing will be mutagenic to a particular strain of Salmonella then 
the training set for the model should include results only from assays 
conducted with that particular strain. On the other hand, if the 
answer sought is whether the new chemical would be an Ames 
mutagen or not, then the results from assays on any Salmonella 
strain could be included in the training set. The data bases from 
which the QSTR models installed in the TOPKAT have been 
developed are, therefore, compiled from experiments performed under 
as uniform conditions as possible. 

For experimental data on developmental toxicity, we identified 
5,559 open literature citations from which the 1238 rat studies were 
selected. 830 of these studies were found to be unusable for different 
reasons (Table I). For 408 unique chemicals, uniform bioassay data 
were available. The molecular structures of these chemicals revealed 
that another 34 chemicals were not suitable for QSTR studies. 

For the 374 chemicals suitable for building QSTR models, we 
extracted, from the original research papers, the doses at which any 
signs of maternal toxicity (MT) or fetal anomalies (Table II) were 

Table I. TOPKAT Developmental Toxicity Data Base 

Total rat studies 1238 
Studies not usable 830 

Ambiguous results 
Multiple studies 
Post-natal studies 
Segment-I studies 

Compounds with usable data 408 
Structure not suitable 34 

Mixtures 
Uncertain structure 
Organometallics 
Salts and acid/base pairs* 

Compounds suitable for QSTR models 374 
aWhen separate assays were conducted on a salt and its corresponding 
weak acid or base, the results from salt were not considered. 
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reported by the authors. Two interesting observations were made: (i) 
some studies were performed at one dose only and both 
developmental and maternal toxicity were reported at that dose, and 
(ii) for some studies, neither DT nor MT was reported even at the 
highest exposure dose. Studies in both these groups were considered 
cases of inadequate experimentation, at least for QSTR modeling, 
because selection of lower doses in group (i) and higher doses in 
group (ii) could alter the outcome. Recognizing the uniformity 
required in the response variable values, we decided to further 
exclude all studies falling in these two categories. 273 chemicals 
finally remained in the data base. 

Table Π. Some Signs of developmental and maternal toxicity 

Developmental Toxicity 

Reduced fetal growth 
Fetal death 
Resorptions 
Abnormal brain 
Cleft palate 
Skeletal anomalies 
Limb defects 
External malformations 
Hemorrhage 
Runting 
Visceral defects 

Maternal Toxicity 

Decreased feed intake 
Weight loss 
Increased mortality 
Alopecia 
Behavioral 
Respiratory distress 
Lethargy 
Increased water intake 
Local irritation 
Rough fur 
Vaglnal bleeding 

Based on the relative doses which produced developmental and/or 
maternal toxicity, we assigned developmental toxicity potential (DTP) 
score to each of the 273 chemicals using the following criteria: If no 
signs of DT are observed even at the highest dose, the DTP score 
assigned was 1, i.e. no DTP is associated with the chemical. A 
chemical was assigned a DTP score of 2 if both DT and MT are 
observed at all doses except at least one dose at which neither MT 
nor DT is observed. A DTP score of 3 was assigned to chemicals 
which induce signs of DT one dose before the dose producing signs of 
MT. Finally, the chemicals for which DT is observed two or more 
doses before the dose inducing signs of MT were assigned a DTP 
score of 4. The population of DTP scores 1,2,3, and 4 in the data base 
of 273 chemicals was 129, 59, 27, and 58, respectively. 

One of the prerequisites of applying the LFER approach in 
developing QSTR models Is that the chemicals in the training set be 
structurauy similar and have the same mechanism of action. In the 
absence of the knowledge of mode of action/mechanism, we decided 
to divide the 273 chemicals into broadly similar structural classes. 
Three classes of reasonably close population size were identified: 87 
aliphatics, 95 carboaromatics, and 91 heteroaromatics. The 
distribution of DTP scores in these three classes is given in Table III. 

Due to a small number of chemicals with DTP score 3, 
particularly in the carboaromatic and heteroaromatic classes, and 
due to the skew of the distribution towards chemicals with DTP score 
1, it was decided to combine the chemicals with DTP score of 2,3, and 
4 into one group, called positive (POS), and to label the chemicals 
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Table m. Distribution of DTP Scores Among Chemical Classes 

DTP 
Score/ 
Class 

Chemical Class 

Aliphatic Carboaromatic Heteroaromatic 

1 
2 
3 
4 

39 41 49 
16 22 21 
14 8 5 
18 24 16 

NEG 
POS 

39 
48 

41 
54 

49 
42 

with DTP score 1 as NEG. Consequently, the QSTR model was 
developed to discriminate chemicals which will produce 
developmental toxicity, i.e. POS chemicals, from the ones which will 
not, i.e. NEG chemicals. Such a QSTR will answer the question: Will 
the query structure induce/not induce developmental toxicity if in a 
bioassay it were tested at least up to a dose which produces maternal 
toxicity. For obtaining any finer information, such as whether any 
signs of MT be observed before DT is noticed, different group 
boundaries would have to be set. Similarly, given all the dose levels 
as compiled in the data set, a model for predicting the lowest dose 
which will produce any fetal anomalies could also be developed. 

Structure Quantification 

Effective structure quantification is the basis of all structure-property 
relationship studies. It has been shown (8) that the structure 
descriptors should be able to quantify transport, bulk, and electronic 
attributes of a molecular structure. 

Electronic Attributes. Theoretically it is possible to quantify 
electronic attributes at any desired level of complexity ranging from 
quantum mechanical to a mere count of lone pairs. In recent years a 
number of methods have been published which do not require the 
knowledge of molecular geometry and are extremely fast in 
computing electronic properties (9,10) such as partial atomic 
charges, residual electronegativity, effective polarizability, etc. These 
algorithms have a practical advantage, especially for QSPR studies, 
because they can be applied to large sets of big molecules without 
significantly depleting available computational resources. We have 
shown {11)9 through an example of mutagenicity of some triazenes, 
that the QSTRs obtained by using the electronic descriptors 
computed from these non-geometry-based methods are of better or 
equal quality than that of QSTRs developed using sophisticated 
molecular orbital methods. 

For the developmental toxicity models we have applied a rather 
new approach to quantify electronic attributes of molecules. Some of 
the advantages of this approach over the one used for the study of 
triazenes are: 
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a) complete electro-topological information encoding, 
b) greater statistical reliability, 
c) easy comprehension and implementation, 
d) suitable lor validation of predictions. 

A brief description of the two-stage method is given in the following 
sections. 

Identification of Fragments. The first step in quantification 
of electronic attributes o ia molecule is to parse the molecular 
structure for identification of 1-atom and 2-atom fragments which 
are present in our proprietary fragment library. If there are any atoms 
or hybridization states of atoms in a molecule which are not 
represented in the library, such molecules need to be excluded from 
the analysis. At present this library has about 2500 fragments 
consisting of atoms H, B, C, N, O, F, Si, P, S, CI, Br, and I in a variety 
of hybridization states and covers a wide range of organic molecules. 
If needed, the library can be expanded to include atoms of particular 
interest. 

There are two sets of fragments in the library; general and 
specific fragments. Unlike general fragments, the specific fragments 
include attached H atoms and impose restrictions on the topological 
environment of atom(s). 

Computation of Electro-topological State Values. After 
having identified the unique set of fragments in a molecule, the 
electro-topological state values, E-values (12), of these fragments are 
computed. The Ε-value of a fragment encodes information about its 
electron content (valence, sigma, pi and lone-pair), topology, and 
environment. Since an Ε-value is computed by taking into account 
the effects of both intrinsic and environmental features, it changes 
even with remote variations in structures; of course, the magnitude of 
variation depends on the severity of change. The computation of the 
Ε-value of any atom begins with assignment of intrinsic state value, I, 
to every non-hydrogen atom i in the molecule according to: 

δ ν + 1 
I = 

6 

where δ is the number of σ-electrons and δ ν is the sum of sigma, pi 
and lone-pairs of electrons. The lvalue is then corrected for the field 
influence ΔΙΑ on atom i. ΔΙ{ may be calculated as: 

n . .Ç.,.L:..iL 
Λ, 

where rM is the number of atoms in the shortest path between atoms i 
and j , both inclusive. The sum of Ix and ΔΙ{ then gives the E-value 
atom i. The Ε-value for a fragment is calculated by summing up the 
Ε-values of the atoms involved in the fragment. It is these E-values 
on all 1-atom and 2-atom fragments which are used here to quantify 
the electronic attributes of molecules. 

In our experience, the type, count and the E-values of 1-atom 
and 2-atom fragments collectively define, for all practical purposes, a 
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chemical structure uniquely. For 3-methoxy-1 -propanol, for instance, 
four 1-atom and four 2-atom fragments are generated. They are: 

1-Atom 2-Atom 

Type Count Type Count 

- C H 2 3 -CH 2 -CH 2 - 2 
-Ο- 1 -CH 2-OH 1 
-OH 1 -CH 2-0- 1 
- C H 3 1 -0-CH 3 1 

Collectively, the counts and Ε-values of these fragments will uniquely 
quantify the structural information of 3-methoxy-1-propanol only. 

Transport Attributes. The transport attributes are generally 
expressed in terms of the logarithm of partition coefficient between 
n-octanol and water, logP (13). Since LogP is an additive-constitutive 
property, it can be calculated from the constant contributions of 
structural features of a molecule (14-16). Considering these 
contributions as different weights associated with various structural 
fragments, we decided to use the counts of 1-atom and 2-atom 
fragments instead of logP and left the selection of fragments and the 
assignment of weights of the selected fragments to be determined by 
the statistical method used for developing the structure-property 
relationship. 

Since molecular shape and molecular symmetry also influence 
molecular transport, we included topological shape descriptors, mfc 
(kappa), of orders 1 through 7 (17,18) and seven indices of molecular 
symmetry (19) for quantifying the transport attributes of molecules. 

Bulk Attributes. Besides molecular weight, we used size-corrected 
Ε-values on 1-atom and 2-atom fragments for quantification of 
molecular bulk. The size-corrected Ε-values are computed from a 
rescaled count of valence electrons; 4δ ν /η 2 instead of Si 

Model Development 

Predictor Variables. All the structural descriptors, namely, shape 
indices, symmetry indices, and counts, Ε-values, and size-corrected 
Ε-va lues of 1-atom and 2-atom fragments for the training set 
chemicals were subjected to a frequency check. Any variables having 
non-zero values for less than five chemicals were not considered as 
predictor variables. This was done to enhance the statistical 
reliability of the predictor variables. 

In order to reduce problems due to possible collinearity of 
variables, the pair-wise correlations of these variables were examined. 
From a pair of variables with correlation coefficient of 0.9 or higher 
only one variable was retained in the descriptor set. The variable 
with a higher order (larger number) in predetermined hierarchy was 
generally retained. The hierarchy of selection of predictors used in 
this work is given in Table IV. A variable with higher order in the 
hierarchy, generally, Is easier to compute and comprehend and is 
more continuous (more non-zero values) than one with a lower order. 
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Table IV. Hierarchy of Different Variables in Correlation Checks 

Category Order in 
Hierarchy 

Molecular Weight 6 
Symmetry Indices 5 
E-values 4 
Size-corrected E-values 3 
Shape Indices 2 
Fragment Counts 1 

Method. The choice of the statistical method for developing a QSTR 
model, among other factors, depends on the scale on which the 
response variable is expressed. For a toxicity measure which is 
expressed in terms of the dose required to cause/inhibit a predefined 
effect, regression and related techniques are perfectly suitable. The 
examples of such response variables are: LD^, MTD, LOAEL, etc. On 
the other hand, if the toxicity measure represents membership in 
certain group for a predefined dose, some classification technique is 
applied for developing a model capable of distinguishing members of 
one class from others. Classification of chemicals into four groups 
based on the evidence of carcinogenicity of chemicals by the National 
Toxicology Program (NTP), for instance, provides a polychotomous 
response variable. 

For the chosen example of developmental toxicity, expressed as 
membership either to the NEG or POS group, the method of linear 
discriminant analysis (LDA) was used. This method produces two 
functions; one for the NEG class of chemicals and the other for the 
POS class of chemicals. Both functions use the same predictors. The 
coefficients of the predictors are, of course, different in the two 
functions and are so adjusted as to maximize the accuracy of 
classification. The number of descriptors in a function can be 
controlled by different techniques. See Gombar and Enslein (20) for 
more details on the method of LDA. 

The BMDP 7M procedure was employed for carrying out LDA 
on the three data sets of aliphatic, carboaromatic, and 
heteroaromatic chemicals. The selection of variables in this step-wise 
procedure was controlled by the F-values (ENTER and REMOVE) of 
variables and the orthogonality of the variables in the discriminant 
function was checked by their multiple linear correlation 
(TOLERANCE). To begin with, any variable with an F-TO-ENTER 
value of 1.7 was included in the function. If inclusion of a subsequent 
variable reduced the F-TO-REMOVE value of an already included 
variable below 1.7, the old variable was excluded from the function. 
And if the inclusion of a subsequent variable would result in a 
multiple linear correlation coefficient of 0.95, such a variable would 
be marked. Under such circumstances, the order of variables in 
which they could be included in the function was changed so as to 
select the most potent variables. If the number of predictors in the 
discriminant function exceeded one-fifth the number of compounds 
in the data set, the F-TO-ENTER and F-TO-REMOVE limits were 
systematically increased. 
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A variety of diagnostics were performed on the tentative 
discriminant function thus obtained. For every compound, the 
posterior probabilities of classification were examined. Exactly equal 
posterior probability for both the groups, NEG and POS, is a sign of a 
unique variable-compound association. The offending variable was 
identified and removed from the analysis. This generally does not 
affect the quality of the function. 

Secondly, the Mahalanobis Distance (MD) of each compound 
was examined. A conspicuously large value of MD for both groups is 
generally a sign of some poorly distributed variables in the Junction. 
In such cases, the offending variable was removed and the step-wise 
procedure was repeated. 

The stability of the model was examined by comparing the 
performance of the function on the training set with that in the leave-
one-out test. A significant reduction in the accuracy of classification 
is a sign of an unreliable function. Such a situation can not be 
improved unless restrictions on the number of predictors or degree of 
ortnogonality are relaxed. 

The stability of the model was further tested by randomly 
splitting the modeling set into a training set (90%) and a prediction 
set (10%). The discriminant function is developed from the training 
set and the values of response variable for the compounds in the 
prediction set are computed. The computed values are compared with 
the actual values. If the accuracy in uie prediction set is of the same 
order as that in the original set, the model may be considered robust. 
The test was repeated (25 to 30 times) till every compound was 
placed at least once in the prediction set. The structures of the 
compounds mispredicted repeatedly were noted to define limitations 
of the applicability of the function. 

The robust model obtained at this stage was validated in order 
to rule out the possibility of accurate classification by chance. The 
values of the response variables of the compounds were randomly 
switched till the population of NEG and POS was roughly the same as 
in the actual training set. If the accuracy of the function for this 
randomly assigned response values is not significantly different from 
the accuracy of the model, the function may be unreliable. A number 
of such validation comparisons were made to ascertain the reality of 
the function. 

Results 

Some of the important statistical parameters determining the quality 
of linear discriminant models developed for discriminating chemicals 
with no developmental toxicity potential from the rest are collected 
in Table V. It can be seen that the three QSTR models are 
statistically significant. In all cases the ratio n/p is greater than 
three and the F-ratios of the models are significant for tine respective 
degrees of freedom. The F ^ values of 2.0 and more indicate that the 
least contributing descriptor is also significant at ρ < 0.005. A 
descriptor with the largest F-TO-REMOVE value, F , is the 
strongest predictor in a given model. Small values of Wilk's Λ imply 
good separation of NEG and POS chemicals. The classification 
accuracies of the three models in the leave-one-out jackknife test are 
given in Table VI. It can be seen that the overall accuracy ranges 
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between 86 and over 91%. It may be mentioned that the chemicals 
classified in the dead zone of posterior probability of classification 
between 0.3 and 0.69, i.e. tne indeterminates, are considered 
mispredictions in calculating these overall accuracy numbers. In 
order to confirm that this accuracy of the models was not due to 
chance, we randomly assigned chemicals to the NEG and POS 
classes, keeping the populations of NEG and POS classes equal to the 
original population, and redeveloped a discriminant function using 
the descriptors of the models. For all three subsets, these functions 
returned no more than 53% correct classification indicating the 
association between the model descriptors and the actual 
membership to NEG and POS classes. 

The robust and cross-validated models were installed in the 
TOPKAT software package to permit their interactive use for 
assessing the DTP associated with a given molecular structure. 

Table V. Statistical Parameters of TOPKAT DTP QSTR Models 

Statistical Submodel 
Parameter 

Aliphatics Carboaromatics Heteroaromatic 
N a 87 95 91 
n b 79 92 90 
P c 22 29 29 

Electronic 15 19 21 
Shape 2 0 0 
Symmetry 1 1 0 
Fragment count 4 9 8 

F-ratio 7.70 7.59 7.96 
Wilk'sA 0.25 0.22 0.21 
F 57.2 34.3 58.4 

ΓΠΗΧ 
F 
1 min 

2.9 2.3 4.7 

aNumber of compounds in the TOPKAT data base. 
bNumber of compounds in the training set. 
cNumber of descriptors in the QSTR model. 

Table VI. Classification Accuracies of TOPKAT DTP Discriminant 
Models in the Leave-one-out Jackknife Test 

Statistic Submodel 

Aliphatics Carboaromatics Heteroaromatic 

N-NEG 35 39 49 
N-POS 44 53 41 
Sensitivity 88.6% 87.0% 86.1% 
Specificity 88.6% 97.4% 86.0% 
Accuracy 88.6% 91.4% 86.0% 
Indeterminate 2.5% 2.2% 5.5% 
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Using DTP Models in TOPKAT 
The first step in using TOPKAT is to input the molecular structure of 
the query chemical as a SMILES string (21). If the input structure 
corresponds to a chemical in the data base, the program 
communicates that fact to the user and displays the chemical name 
and ID (CAS or NIOSH number), experimentally assigned DTP class 
along with its original source, and the TOPKAT-assigned DTP class. 
However, while designing new molecules the input structure, 
generally, will not be one from the training set. In order to present a 
real-life application of different functionalities of the program, we 
applied it to a number of chemicals (Figure 1) which are not in the 
data base but whose DTP class assignment has been determined. It is 
easy to be misled by the outcome of applying QSTR to any chemical 
structure. As mentioned earlier, QSTR, being an equation, will always 
result in a value for the response variable if the descriptor variables 
were provided. The value however, may not be meaningful or reliable. 
The software is equipped with algorithms for pointing out when the 
QSTR-assigned DTP class may not be reliable. Some of the situations 
are discussed below: 

Unusual Atoms/Bonds. The program parses the structure to 
identify any atoms or bonding situations which, for some reasons, 
are not supported by the program. On entering the structure of diazo-
oxo-norleucine (CAS 157-03-9), the program warned that the 
unusual bonding of Ν atom in the -CHN 2 fragment could not be 
processed and execution was terminated. Such a situation is not 
common when dealing with single organic molecules since TOPKAT 
can handle 12 atoms in 20 different hybridization states. 

Groups Present in Misclassified Chemicals. When all atom- and 
bond-types in the query structure are present in the training set 
chemicals, TOPKAT scans for the substructures which, according to 
its experience from the resubstitution test, are associated with 
misclassified compounds. The user is warned in such a case that the 
TOPKAT-assigned class may be unreliable but the program does not 
stop processing. For 3-aminopropionitrile (CAS 151-18-8), the 
program issued this warning for the -CN group. It should be 
mentioned that in this particular case though the TOPKAT-assigned 
class matched the experimentally-assigned class, the accurate match 
may have occurred just by chance. 

Fragments Unrepresented. As TOPKAT parses the input structure 
it checks whether or not the 1-atom and 2-atom fragments in the auery are represented in the training set chemicals. If they are not, 

tie fragment(s) is(are) highlighted for the user's perusal. In such a 
case the user, with his knowledge of the subject and experience, may 
over-ride the warning and accept the TOPKAT-assigned DTP class. 
By default, however, the query chemical will be labeled "not covered" 
and the result may not De reliable. Such a situation is not very 
common because (i) the QSTR modules in TOPKAT are, generally, 
developed from large sets of heterogeneous data sets, and (ii) the 
fragment library has been designed to cover combinations of over 100 
atom-types; for instance, >C=, >C<, -CH 3 , -CH 2 - , etc., are different 
atom-types, Endosulfan (CAS 115-29-7) was found to be "uncovered" 
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due to the cyclic >S=0 fragment which is non-existent in the training 
set of 79 aliphatic chemicals. 

Descriptors Outside the Range. It is important not to extrapolate 
the QSAR models too far outside the ranges of descriptor variables as 
it will result in statistically unreliable predictions. Therefore, 
TOPKAT stores the univariate statistical data such as minimum and 
maximum values, average, standard deviation, etc. on descriptor 
variables and checks that the descriptor values for the query 
structure are within the range of the corresponding descriptor values 
from the training set. For Fertilysin (CAS 1477-57-2), for example, 
the program identified that one of the descriptors was more than 
three standard deviations outside the range. A QSPR-predicted result 
in such a case cannot, and should not, be accepted. The 
experimentally-assigned DTP class for Fertilysin is POS, whereas the 
TOPKAT-assigned DTP class is NEG; but, as we have shown, 
the TOPKAT-assigned class is not reliable in this case. 

Outside the Optimum Prediction Space (OPS). Sometimes the 
query descriptor values may be within the training set descriptor 
value ranges on a univariate basis but still, due to orthogonality of 
the descriptors, they may lie outside the OPS of the QSAR model. 
Under these circumstances the user is informed about (i) the 
descriptor(s) which are outside the OPS, (ii) their distance from the 
OPS, and (ill) their relative contribution to the computed value of the 
response variable. In case only a few variables are outside the OPS 
and the distance from the OPS is within one standard deviation, the 
TOPKAT-assigned value may be accepted. However, if variables are 
far outside the OPS and/or the variables outside the OPS contribute 
the most to computed value, the TOPKAT-computed value may be 
questionable. 

For Hydroxyzine (CAS 68-88-2) one variable was found to be 
outside the OPS with a distance within one standard deviation. The 
TOPKAT-assigned DTP class was accepted. Indeed, it was confirmed 
to be a correct classification. Similarly, for Buclazine (CAS 82-95-1) 
there were many variables outside the OPS but marginally. The 
TOPKAT-assigned DTP class for buclazine was also considered 
validated. In this case also the TOPKAT-assigned and actual DTP 
classes matched. For Fertilysin, as mentioned above, not only there 
were many univariate out of range variables but these were far 
outside the OPS. This indicated that the DTP classifier of TOPKAT 
should not be applied to Fertilysin. 

Conclusions 

In the process of designing new chemicals, it is important to assess 
their toxicity, preferably before they are even synthesized. Robust and 
statistically significant QSTR models installed in TOPKAT, a modular 
computational toxicology tool, can generate, from molecular 
structure, a variety of mammalian, aquatic, and environmental 
toxicity measures, thus providing a capability to follow the toxicity 
profile as molecular structure is modified during the design process. 
The algorithms to autovalidate a computed toxicity measure are an 
extremely powerful and unique function of the TOPKAT package. 
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Chapter 18 

Comparison of In Vivo and In Vitro Toxicity 
Tests from Co-inertia Analysis 

James Devillers1 and Daniel Chessel2 

1Centre de Traitement de l'Information Scientifique, 
21 rue de la Bannière, 69003 Lyons, France 

2Université Lyons-I, Unité de Recherche Associée, Centre National 
de la Recherche Scientifique 1451, 43 Boulevard du 11 Novembre 1918, 

69622 Villeurbanne Cedex, France 

Co-inertia analysis is a multivariate method allowing to find 
the co-structure between two data tables from powerful 
statistical and graphical tools. It was used to compare toxicity 
results obtained with the rabbit eye test in vivo to those 
obtained with the in vitro eye organ test. 

The aim of toxicity testing is to allow the prediction of the effects that 
chemicals are likely to have in man by the extrapolation of the effects 
observed in experimental animals or other biological systems. Safety 
testing is performed either to assure the safety in use of a medicine, 
food or consumer product, or to estimate the extent of the occupational 
hazard presented by an industrial chemical (7). 

Over the last decade, there has been an increasing pressure to 
reduce animal experimentation and develop in vitro methods in 
pharmacotoxicology (2,5). However, before any in vitro toxicity test 
can be used with any degree of reliability, a validation exercise is 
needed (4). Usually, in vitro data are compared with in vivo data by 
means of regression analysis (e.g.; 5, 6). Even if this simple statistical 
analysis generally gives some interesting results, it is not sufficient to 
estimate the relevance of these different test systems, to select adequate 
endpoints, and to derive valuable structure-activity relationships. This 
study is designed to stress the usefulness of co-inertia analysis (7) to 
overcome these different problems. 

0097-6156/95/0589-0250$12.00/0 
© 1995 American Chemical Society 
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Sample and Research Methodology 

During the past several years, considerable research effort has been 
directed towards the development of alternatives in vitro to the rabbit 
eye test in vivo (8-12). Indeed, rabbit eye test in vivo (13) has 
frequently been criticized due to methodological, economical, and 
ethical problems (72,14,15). Under these conditions, a wide variety of 
in vitro techniques for predicting eye irritancy has been described in 
the literature (8,10,11,16). Among them, the enucleated eye test (17, 
18) based on the measurement of the change in corneal thickness that 
follows exposure of the eye to an irritant chemical is regularly cited in 
the literature as an attractive alternative in vitro method. Indeed, 
although enucleated eyes are required, the animals are humanely killed 
before use. Two eyes are available from each rabbit, when in vivo only 
one eye is used. Eyes may be taken from rabbits that have been used for 
skin irritation and that are due to be killed on the completion of that 
test. Complex and expensive tissue culture techniques are not required 
and after the initial outlay on the equipment, the running costs are 
minimal. The in vitro eye organ test can be used to examine insoluble 
powders and acid or alkali solutions that cannot, or cannot readily, be 
assayed in cell cultures (79-27). 

In a recent article, Jacobs and Martens (22) estimated in a first 
time the corneal swelling in vivo and in vitro for 34 substances. The 
corneal swelling data obtained in vivo after 4, 24, 48, and 72 hours of 
exposure were then compared with the corneal swelling data obtained in 
vitro after 0.5, 1, 2, and 4 hours of exposure by means of simple 
regression analyses. Since their data appeared insufficiently exploited, 
we have tried to extract more information from their matrices by 
means of the co-inertia analysis (7). 

Co-inertia analysis can be viewed as a generic multivariate 
method to find the co-structure between two data tables (Figure 1). 
These two data matrices are first considered independently. They can be 
analyzed by means of different multivariate approaches such as 
principal components analysis (PCA), correspondence factor analysis 
(CFA), or multiple correspondence factor analysis (MCFA). These 
separate analyses underline the basic structure of the two data tables. In 
a second step, a matching analysis is performed in order to detect a co-
structure between the two data matrices. This second analysis is based 
on the research of co-inertia axes maximizing the covariance between 
the coordinates of the projections of the rows of each data table. 

The mathematical model of this analysis can be formulated as 
follows: 

Let (X, Dp, Dn) and (Y, Dq, Dn) be two statistical triplets; Table 
X is the first data set (after an initial transformation); D p contains the 
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1 1 

chemicals X chemicals γ 

η η 

in vivo in vitro 

MAXIMAL COVARIANCE BETWEEN 
IN VIVO AXIS AND IN VITRO AXIS 

in vitro 

MAXIMAL 
STANDARD 
DEVIATION 

in vitro 
axis 

• a ^ i MAXIMAL 
» 7 CORRELATION 

in vivo 
axis 

MAXIMAL STANDARD 
DEVIATION 

Figure 1. General principle of co-inertia analysis. 
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weights associated with the columns of Table X; D n contains the weights 
associated with the rows of Table X. Table Y is the second data set 
(after an initial transformation); D q contains the weights associated with 
the columns of Table Y; D n contains the weights associated with the 
rows of Table Y. 

The first statistical triplet (X, Dp, Dn) defines an inertia analysis 
of η points in a multidimensional space noted Rp and of ρ points in a 
multidimensional space noted Rn. After diagonalization, r principal axes 
are kept and the matrices Rr, C r, N r are generated. Rr contains the 
scores of the η rows on the r axes. C r contains the scores of the ρ 
columns on the r axes. Nrcontains the eigenvalues (vi...vr). 

The second statistical triplet (Y, Dq, Dn) defines an inertia 
analysis of η points in a multidimensional space noted Rq and of q 
points in a multidimensional space noted Rn. After diagonalization, s 
principal axes are preserved and the matrices Rs, C s, M s are generated. 
Rs contains the scores of the η rows on the s axes. C s contains the scores 
of the q columns on the s axes. M s contains the eigenvalues (μι...μδ). 

Let u and ν be a pair of vectors. The former is normalized by 
matrix Dp in the multidimensional space Rp and the latter is normalized 
by matrix D q in the multidimensional space Rq. The projection of the 
multidimensional space associated with Table X onto vector u generates 
η coordinates in a column matrix: 

ξ = Χ ϋ ρ ΰ (1) 

The projection of the multidimensional space associated with Table Y 
onto vector ν generates η coordinates in a column matrix: 

\|f = Y D q v (2) 

Co-inertia associated with the pair of vectors u and ν is equal to: 

H(u,v)= ξ ί ϋ η ψ (3) 

If the initial Tables X and Y are centered, then the co-inertia is the 
covariance between the two new sets of scores: 

Cov (ξ,ψ) = (Ineri (u))l/2 (Iner2 (v))l/2 Corr (ξ,ψ) (4) 

with Ineri (u) as the projected inertia onto vector u (i.e.; the variance 
of the new scores on u), Iner2 (v) as the projected inertia onto vector ν 
(i.e.; the variance of the new scores on v), and Corr (ξ,ψ) as the 
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correlation between the two coordinate systems. Note that the square of 
the latter entity Corr (ξ,ψ) is maximized via canonical correlation 
analysis. 

To obtain co-inertia axes, one diagonalizes the following matrix: 

W = Dpl/2 Xt D n Y D q Y* D n X Dpl/2 (5) 

Let U z be the matrix containing the first ζ normalized eigenvectors of 
W and Λ ζ be the matrix containing the first ζ corresponding 
eigenvalues (noted Xk, l<k<z). The first ζ co-inertia axes (associated 
norm Dp) in Rp are obtained as: 

A z = Dp-1/2 U z (6) 

The first ζ co-inertia axes (associated norm Dq) in Rq are obtained as: 

B z = Yt D n X Dpl/2 U z A z-1/2 (7) 

A ζ and B z are called optimal co-inertia weights of the variables, 
respectively, in Tables X and Y. The co-inertia scores of Table X rows 
are obtained as: 

X* z = X Dp A z (8) 

The co-inertia scores of Table Y rows are obtained as: 

Y * z = Y D q B z (9) 

Furthermore, one may compare the projected variability 
resulting from the separate analyses and that from co-inertia analysis by 
calculating the scores of the initial inertia axes projected onto the co-
inertia axes. Let C*r and C* s be the resulting scores with: 

C* r = Nr-1/2 C r

l D p A z (10) 

and 

C* s = Ms-1/2 Cs* D q B z (11) 

We call the diagonal elements of matrix (X*z)1 D n X*z and matrix 
(Y*z)1 D η Υ* ζ pseudo-eigenvalues. Let V k * be the kth pseudo-
eigenvalue of Table X and be the kth pseudo-eigenvalue of Table 
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Y. Such values are useful in situating the value of co-inertia axes in 
comparison with inertia axes. Finally, the quantity: 

Pk* 2 ^ k / (v^k*) (12) 

is an expression of the correlation between the two new sets of 
coordinates. 

Co-inertia analysis was performed with the ADE software 
package (23) on two 33 χ 4 data matrices which are graphically 
displayed in Figure 2. Indeed, ammonia was eliminated from our 
statistical analysis due to an unrealistic toxicity value measured in vivo 
(22) after 24 hours of exposure. 

Results and Discussion 

Figure 2A shows that the chemicals under study can be classified 
according to their level of toxicity measured in vivo but also according 
to the evolution of their activity in relation with the different times of 
exposure. Thus, for example, sodium acetate is not toxic in vivo while 
diethylamine is very toxic. Furthermore, Figure 2A reveals that the 
toxicity of the former does not change with the time of exposure while 
the toxicity of the latter considerably changes after 4, 24, 48, and 72 
hours of exposure. Analysis of Figure 2B dealing with in vitro 
experiments leads to the same type of conclusions. However, the 
comparison of the graphical displays of the toxicity results obtained in 
vivo and in vitro allows to underline some discrepancies in the 
toxicological behavior of the 33 studied chemicals. 

From a simple visual inspection of Figure 2, it appears that there 
exists an obvious toxicity model within the in vivo and in vitro data 
matrices. These obvious models are directly linked to the information 
encoded by the rows and columns of the data matrices. Thus, for 
example, if we consider that the toxicity data obtained in vivo depend 
on the structure of the chemicals under study and the time of exposure, 
we can easily demonstrate (Figure 3) that these two parameters are not 
linked by an additive relationship (i.e.; row mean + column mean -
overall mean) but are related by means of a multiplicative effect using 
the best estimation obtained from the first factor of a noncentered PCA 
(24). 

A similar multiplicative model was obtained with the in vitro data 
(results not shown). Under these conditions, it is obvious that the 
toxicological responses obtained with the rabbit eye test in vivo are 
correlated to those obtained with the in vitro eye organ test. This is 
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4h 
48 h 

24h72h 
24 h 
48 h 

4h72h 4h 
24h 

48 h 
72 h 

•10 140 -10 140-10 140 

Figure 3. Mean corneal swelling (%) measured in vivo (A) and 
calculated from the additive (B) and multiplicative (C) models. 

clearly underlined on Figure 4 which principally allows the comparison 
of the levels of toxicity in the two test systems. Thus, for example, 
sodium acetate, triacetin or 1,2-propanediol, which are not toxic in vivo 
are also weakly reactive in vitro. In the same way, diethylamine which 
appears very toxic in the eye test in vivo also presents a high degree of 
reactivity with the enucleated eye test. However, it is interesting to note 
that some chemicals such as hydrochloric acid or 2-methoxyethanol 
have different effects on the corneal swelling in vivo and in vitro and 
therefore decrease the degree of correlation between the two test 
systems. The study of the particular toxicity of these types of chemicals 
in the two test systems is particularly suitable for comparing the in vivo 
and in vitro assays. 

Thus, it appears fruitful to try to find a common obvious model 
of toxicity between the two data matrices under study and then focus 
our attention only on the residuals (i.e.; differences between the 
measured toxicity data and those calculated from the model). This 
multiplicative model was simply derived after joining the in vivo and in 
vitro data tables. The graphical displays of the multiplicative model 
obtained in vivo (Figure 5B) and in vitro (Figure 6B) and their 
comparison with the graphics of the raw toxicity data (Figures 5A and 
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1,2-Propanediol 
Triacetui 
Sodium acetate, 10% 
2-Methoxyethanol 
Tween 80 
Dimethyl sulfoxide 
Toluene 
Glycerine 
Sodium dodecyl sulfate, 10% 
2-(2-Ethoxyethoxy)ethanol 
Chloroform 
Solketal 

j 1 1 1 1 1 1 1 1 1 1 

-10 140 

Figure 5. Mean corneal swelling (%) measured in vivo (A) and 
estimated from the common obvious multiplicative model (B). 
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Sulfuric acid, 10% 
Acetone 
Phosphoric acid, 17% 
Solketal 
Formamide 
Hydrochloric acid, 10% 
Silver nitrate, 5% 
Thioglycolic acid, 10% 
Sodium dodecyl sulfate, 10% 

Sodium acetate, 10% 
Dimethyl sulfoxide 
1,2-Propanediol 
TweenSO 
Triacetin 
Glycerine 
Toluene 

Tetrahvdrofurfiiryl alcohol 
iV-metnylformamide 0 u . . . o c / 

2-Methoxyethanol Sodium hydroxide, 2% 
Acetic acid, 10% 1-Butanol 
Chloroform AUyl alcohol 

2-Butoxyethanol 
Dielhylamine, 2% 

Figure 6. Mean corneal swelling (%) measured in vitro (A) and 
estimated from the common obvious multiplicative model (B). 
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6A) clearly show that the results recorded in vitro are more 
reproducible than those obtained in vivo. Furthermore, it is obvious 
that generally a peak of toxicity is reached after 48 hours of exposure 
for the rabbit eye test in vivo while the maximum of toxicity is only 
obtained after 4 hours of exposure for the enucleated eye test. 

In order to extract the remaining toxicological information 
included in the in vivo and in vitro data matrices, we performed a co-
inertia analysis on the residuals computed from the common obvious 
model of toxicity. The separate analyses consisted of two noncentered 
PCA. On the resulting maps (Figures 7 and 8), the location of the 
chemicals depends on the variability of their toxicological response in 
relation with the common model of toxicity. This methodological 
approach allows us to easily identify compounds presenting a particular 
toxicological behavior in the in vivo and in vitro test systems. Thus, for 
example, hydrochloric acid, acetic acid and thioglycolic acid are located 
at the bottom of Figure 7 since they present a high toxicity after 72 
hours of exposure. At the opposite, JV-methylformamide, methanol or 
1-butanol are located at the top of the map (Figure 7) due to their high 
reactivity in the first hours of exposure of the tests. Analysis of Figure 
8 leads to the same type of conclusions. However, the comparison of 
Figures 7 and 8 reveals that the time-courses of swelling development 
observed in vivo and in vitro for the chemicals under study are 
different. This is particularly well demonstrated when we perform the 
matching step of the co-inertia analysis and draw the bivariate graph 
(Figure 9) illustrating the concordance between the scores of co-inertia 
in vivo and in vitro. Indeed, in the upper right corner, this figure 
shows that chemicals with toxicity increasing during the time-course of 
the in vivo test slowly react in the in vitro test. This is particularly true 
for hydrochloric acid, acetic acid, thioglycolic acid, and sulfuric acid. 
At the opposite, in the lower left corner of the figure, chemicals which 
slowly react in vivo with generally a decrease in their activity with the 
time of exposure present an opposed toxicity behavior in vitro since 
they show an increase of their reactivity during the time-course of the 
test. This can be found for 2-methoxyethanol, chloroform, and so on. 
By contrast, chemicals located in the middle of the figure exhibit a 
comparable time-course for corneal swelling in vivo and in vitro. 

Our study partially confirms the conclusions stated by Jacobs and 
Martens (22). Indeed, it shows that the toxicity data obtained with the 
rabbit eye test in vivo are broadly correlated to those obtained with the 
in vitro eye organ test. However, the use of co-inertia analysis clearly 
reveals that this degree of correlation has to be interpreted with care. 
Indeed, the kinetics of toxicity (i.e.; time-effect curves) of the chemicals 
in the rabbit eye test in vivo and in the in vitro eye organ test are not 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 1

4,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
01

8

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



262 COMPUTER-AIDED MOLECULAR DESIGN 

500 

N-methylformamide 
Methanol 
1-Butanol 
Ethanol 
Solketal 
Sodium dodecyl sulfate, 10% 
2-Methoxyethanol 
Tetî ydrofurfiiryl alcohol 
Chloroform 
Formamide 

Acetone 
2-(2-Ethoxyethoxy)ethanol 

Silver nitrate, 5% 
Phosphoric acid, 17% 
Toluene 
Triton X-100,5% 
Allyl alcohol 
Triacetin ~ 
2-Butanone w 

een80 
•Propanediol 

2-Butoxyethanol 
lycerine 

Dimethyl sulfoxide 
Sodium acetate, 10% 
1-Octanol 
Sodium hydroxide, 2% 
Sulfuric acid, 10% 
Benzalkonium chloride, 2% 
Diemylamine, 2% 
Thioglycolic acid, 10% 
Acetic acid, 10% 
Hydrochloric acid, 10% 

4h 72h 
Figure 7. Noncentered PCA of the residuals (in vivo). Eigenvalues (A), 
projection of the variables (B) and chemicals (C) on PC1-PC2, and 
plot of the residuals for the chemicals along PCI (D). 
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2-Methoxyethanol 
Chloroform 
Methanol 
1-Butanol 
Allyl alcohol 
2-Butoxyethanol 
Sodium hydroxide, 2% 
Ethanol 
Sodium dodecyl sulfate, 10% 
Silver nitrate, 5% 
N-methylformamide 
Formamide 
Triacetin 
Phosphoric acid, 17% 
1,2-Propanediol 
Dimethyl sulfoxide 
Tween 80 
1-Octanol jy 
Toluene 
2-(2-Ethoxyethoxy)ethanol 
Glycerine 
2-Butanone 
Sodium acetate, 10% 
Triton X-100,5% 
Solketal 
Acetone 
Tetrahydrofùrfuryl alcohol 
Diethy lamine, 2% 
Benzalkonium chloride, 2% 
Sulfuric acid, 10% 
Acetic acid, 10% 
Thioglycolic acid, 10% 
Hydrochloric acid, 10% 

0.5 h 4h 
Figure 8. Noncentered PC A of the residuals (in vitro). Eigenvalues 
(A), projection of the variables (B) and chemicals (C) on PC1-PC2, 
and plot of the residuals for the chemicals along PCI (D). 
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the same. Furthermore, it is obvious that it is difficult to compare the 
different times of exposure in the two test systems. From a 
toxicological point of view, these results show that for a better 
comparison of two test systems and for a better description of the 
toxicological behavior of the chemicals tested in vivo and in vitro, it is 
necessary to consider all the different times of exposure. Indeed, 
comparisons performed after pooling the toxicity results obtained at 
different times of exposure obligatorily induce loss of information and 
misinterpretations. Consequently, the most suitable statistical 
approaches for the study of this kind of data are multivariate analyses 
radier than simple correlation analyses. 

Our study also reveals that an exposure period of 4 hours in the 
enucleated eye test is not sufficient to correctly describe the 
toxicological behavior of the majority of the chemicals under study. It 
is interesting to note that Burton and coworkers (18) also use an 
exposure period of 4 hours for the enucleated rabbit eye test. 
Consequently the time-effect curves published in their article (see page 
477, Figure 5) present the same characteristics as those which can be 
drawn from the results of Jacobs and Martens (22). Price and Andrews 
(20) hourly measured the corneal thickness on isolated rabbit eye until 
5 hours of exposure but their results are too sparse to estimate the 
usefulness of their methodology. Last, our methodological approach 
based on the use of co-inertia analysis clearly underlines that some 
families of compounds (e.g.; acids) present very different toxicological 
behavior in vivo and in vitro. 

More generally, our study reveals the heuristic potency of co-
inertia analysis in pharmacotoxicology. Indeed, this statistical analysis 
which works on a covariance matrix is based on the mathematically 
coherent Euclidean model and can be universally reproduced due to its 
numerical stability. The method performs simultaneously the analysis of 
two data tables. Therefore, it is easy to underline the particular and 
common features of these two data matrices. This is particularly 
fruitful for the comparison of toxicity tests or for deriving structure-
activity and structure-property relationships. 

To summarize, co-inertia analysis has to be viewed as a general 
method allowing one to relate any kind of data sets using any kind of 
standard multivariate analysis. 
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Chapter 19 

Combined Use of Linear and Nonlinear 
Multivariate Analyses in Structure—Activity 

Relationship Studies 
Application to Chemoreception 

Daniel Domine1,2, James Devillers1, Maurice Chastrette2, 
and Jean-Christophe Doré 3 

1Centre de Traitement de l'Information Scientifique, 
21 rue de la Bannière, 69003 Lyons, France 
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de la Recherche Scientifique 463, 43 Boulevard du 11 Novembre 1918, 

69622 Villeurbanne Cedex, France 
3Musée National d'Histoire Naturelle, Unité de Recherche Associée, 
Centre National de la Recherche Scientifique 401, 63 rue de Buffon, 

75005 Paris, France 

This study deals with the combined use of correspondence 
factor analysis and nonlinear mapping for deriving structure-
activity relationships of pheromones in Noctuidae and 
assessing the value of the chemical structure of female sex 
pheromones as a character for the classification of Noctuid 
moths. Graphical tools are used to facilitate the interpretation 
of the results. 

The perception of odors and tastes depends on many factors dealing 
with physiology, anatomy, and psychology (1-4). The structure and 
physicochemical properties of the chemicals are also determinant (2, 5-
9). The study of these activities requires examination of 
multidimensional spaces which are not perceivable by humans (70, 77). 
To solve this problem, numerous display or classification methods have 
been devised and used (72-76). These can be divided into linear 
methods (e.g.; correspondence factor analysis (CFA), hierarchical 
cluster analysis (HCA)) and nonlinear methods (e.g.; nonlinear mapping 
(NLM), Kohonen's self-organizing maps (KSOM)). Used separately, 
these methods have shown their efficiency for modeling complex 
biological activities and deriving structure-activity relationships (SAR) 
(77-20). They both present specific advantages and drawbacks. 
However, most published papers involve the use of only one data 
analysis while it is obvious that combinations of linear and nonlinear 

0097-6156/95/0589-0267$12.00/0 
© 1995 American Chemical Society 
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multivariate methods can lead to interesting supplementary and/or 
complementary information (77, 27). The aim of this paper is to stress 
the usefulness of combining CFA with NLM to extract SAR 
information from a data matrix dealing with chemoreception in 
Lepidoptera. 

Experimental 

The data used in this study (Table I) came from a paper of Renou et al. 
(22). These authors tried to assess the value of the chemical structure of 
female sex pheromones as a new character for the classification of these 
Lepidoptera and survey SAR of sex pheromones in seven taxa of 
Noctuidae. For this purpose, they compiled data from the literature and 
they considered the publications dealing with (i) the identification of the 
constituent of the natural sex pheromone of a given species of 
Noctuidae, (ii) the attractive effect of synthetic compounds used either 
alone or mixed with other compounds during field trapping 
experiments. Considering each constituent of the pheromone blends 
separately, they obtained data concerning 44 chemicals and 200 species 
of Noctuidae. For statistical convenience, they considered 19 
subfamilies as basic units and kept the seven which contained enough 
data to lead to a reliable statistical analysis (Table I). 

The statistical and graphical analyses used in this paper were 
performed with STATQSAR, MacMul, and GraphMu (23, 24). 

Results and Discussion 

In Table I, the 44 chemicals are listed using a formalism commonly 
used in the pheromone literature. It designates each molecule according 
to distinctive structural features: 
- the stereochemistry of the double bond (Z or E) with its location (i.e.; 
5, 7, 9, 11, 12), 
- the length of the hydrocarbon chain (i.e.; 10, 12, 14, 16), 
- the terminal functional group (i.e.; OH: alcohol, Aid: Aldehyde, Ac: 
Acetate). 
Thus for example, Z7-12: OH is Z7-dodecenol. 

The data in Table I indicate how many species of the taxa 
(columns) are attracted by a pheromone blend or a synthetic attractant 
comprising the molecules (rows). 

The best way to treat this frequency data table (Table I) is CFA 
(22, 25, 26). A complete description of this method can be found in 
previous papers (25, 26). The main advantages of CFA are that it 
allows to reduce the dimensionality of data matrices and it is 
particularly adapted to contingency and frequency data tables. CFA is 
interpreted from the plots of factorial planes drawn from factorial axes 
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considered two at a time. When most of the inertia is explained on the 
first two factorial axes resulting from the CFA, then the interpretation 
is very easy, since a simple inspection of only one plane is sufficient. 
However, in some instances, the percentage of inertia on the first 
factorial axes is not sufficient to allow a simple interpretation of the 
results from the sole F1F2 plane. In these cases, it is necessary to 
consider several maps (e.g.; F1F3, F2F3) and for all points, inspect the 
relative and absolute contributions which depict the goodness of fit of 
the points on the different planes. This is a long and tedious task but 
more important, when performed by non-specialists in statistics, it can 
lead to erroneous conclusions. 

When a CFA is performed on Table I only 60% of the total 
inertia is extracted from the first two axes (Table II). The 
corresponding plots are shown in Figures 1 and 2. Inspection of these 
figures gives interesting SAR information but can lead to erroneous 
interpretation. Indeed, Table II reveals that five or six axes are 
necessary to obtain a full account of the information contained in the 
data matrix (Table I). Therefore, the study of Table I with CFA 
requires inspection of several factorial planes. As stated above, this kind 
of interpretation is long and tedious and requires training in statistics. 

TABLE II. Eigenvalues and percentages of inertia of the 
factorial axes derived from CFA 

Axis No. Eigenvalues Inertia 
% 

1 0.453 37.89 
2 0.267 22.34 
3 0.203 16.98 
4 0.157 13.17 
5 0.066 5.56 
6 0.049 4.07 

To overcome this problem we propose the use of NLM (27). A 
complete description of this method can be found in a previous paper 
(11). Briefly, NLM tries to preserve distances between points in a 
display space (generally 2-D) as similar as possible to the actual 
distances in the original space by minimizing a mapping error (E) (27). 
In our study, NLM was used to summarize on a sole plane the 
information contained on the factorial axes. By taking the factorial 
coordinates obtained from CFA to run the NLM, one benefits from the 
particular data treatment obtained with CFA and from the ability of 
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Figure 1. Projection of the chemicals on the factorial plane F1F2. 
For captions, see Table I. 

1.2 F2 
Amphipyrinae 

Noctuinae 2 5 Hadeninae 

^ 1 4 \ 
0 f" Cuculliinae 
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Figure 2. Projection of the Noctuidae taxa on the factorial plane F1F2. 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 1

6,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
01

9

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



19. DOMINE ET AL. Linear and Nonlinear Multivariate Analyses 273 

NLM to summarize at best the information contained in a data table on 
a sole map. 

Figure 3 shows the nonlinear map derived from the coordinates 
of the chemicals on the six factorial axes derived from CFA. The low 
mapping error (E = 3.9e-2) indicates that the main information is 
summarized on the map. 

We have to underline that there is no criterion by which to judge 
that the representation on a nonlinear map is better than this obtained 
by a classical linear multivariate analysis. For comparison purposes, we 
propose to calculate the mapping error on the factorial plane F1F2 
derived from CFA and compare this parameter with the mapping error 
obtained with NLM. Comparison of these mapping errors (Figures 1 
and 3) confirms that the representation of the chemicals given by the 
factorial plane F1F2 is distorted due to the low percentage of inertia 
explained on it. It also clearly underlines the usefulness of performing 
the NLM analysis in order to obtain a sole easily interprétable map. 

In the same way, compared with the projection of the taxa on the 
factorial plane F1F2 (Figure 2), a wider scattering is obtained on the 
nonlinear map (Figure 4) indicating that the factorial plane F1F2 only 
gives a distorted representation of the relations between the taxa (Table 
I). From a practical point of view, the wide scattering of the seven taxa 
on Figure 4 reveals that pheromones can be used to define new 
characters for classifying the Noctuidae since they are well separated on 
the map. 

Since interpretation of the nonlinear maps obtained for the 
chemicals (Figure 3) and for the taxa (Figure 4) requires tedious back 
and forth comparisons between the maps and the information useful for 
their interpretation (e.g.; original data, characteristics of the chemicals), 
graphical tools have been used to facilitate this work (28,29). 

Thus, the plot of the original data (Table I) on the chemical map 
(Figure 3) by means of squares proportional in size to the magnitude of 
the original values (Figure 5) allows us to summarize all the 
information contained in Table I. In Figure 5, the larger the square, the 
larger the frequency. Figure 5.1 allows us to stress that chemicals n° 
22, 24-26, 29, 33, 36-38, 40, 42 and 43 have not been cited in the 
literature as a component of a sex pheromone blend or an attractant for 
a species of the taxon Noctuinae. As the dienes of the set (except E9, 
11-12: Ac (n° 14) which has a weak frequency) are also located in this 
area, they are not associated with the species of the Noctuinae. 

Figure 5.2 shows that the most cited chemicals for Amphipyrinae 
are Z9-14: Ac (n° 21) and Zll-16: Ac (n° 30). Amphipyrinae is the 
sole taxon containing species which are associated to the dienes Z9, 
Ell-14: Ac (n° 25) and Z9, Z12-14: Ac (n° 42) and to the Ε acetate 
Ell-14: Ac (n° 24). 
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Figure 3. Nonlinear map of the chemicals. For captions, see Table I. 
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Figure 4. Nonlinear map of the Noctuidae taxa. 
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Figure 5. Representation of 
the original data for each 
chemical. For interpretation, 
see Table I and text. 
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For Plusiinae (Figure 5.3), all the chemicals cited as components 
of sex pheromone blends or synthetic attractants are located in the 
center of the figure. Except for the chemicals indicated in black (i.e.; 
Z7-12: OH (n° 1), Z7-14: OH (n° 2), 16: Ac (n° 27)), all chemicals are 
C12 or C14 acetates. No CIO chemicals and aldehydes were found to 
attract Plusiinae. The largest frequency is observed for Z7-12: Ac (n° 
11). Indeed, the great majority of sex attractive blends for male 
Plusiinae contains Z7-12: Ac (22). 

Figure 5.4 shows that for Cuculliinae, the chemicals which are 
the most cited in the literature are generally the same as those of the 
other taxa (i.e.; Z9-14: Ac (n° 21), Zll-16: Ac (n° 30)). 

For Hadeninae (Figure 5.5), the largest squares are observed for 
chemicals n° 4 (Zll-16: OH), 21 (Z9-14: Ac), 23 (Zll-14: Ac) and 
especially for compound n° 30 (Zll-16: Ac). For Zll-16: OH (n° 4), 
the frequencies are lower or null for the other taxa (Figure 5). 

For Heliothinae (Figure 5.6), this taxon shows a relatively 
exclusive response to C16 aldehydes. Zll-16: Aid (n° 39) was the main 
component of the five species studied up to now (22). All the acetates 
(colored in grey) except 14: Ac corresponding to the aldehydes are 
present but their frequency is generally lower. There is no chemical 
with aC10orC12 hydrocarbon chain. Most of the chemicals involved 
contain 16 carbon atoms. 

For Acontiinae (Figure 5.7), although the frequencies are weak 
(i.e.; small squares), it is interesting to note that the chemicals involved 
are only acetates. This map also allows to stress β-oxidation chain-
shortening steps which are known to play an important role in the 
biosynthesis of pheromones and produce apparent displacement of the 
considered double bond through a shift of two carbon atoms (22). Thus, 
in Figure 5.7, one can observe the two following series: (i) Z5-10: Ac 
(n° 6), Z7-12: Ac (n° 11), Z9-14: Ac (n° 21), Zll-16: Ac (n° 30) 
indicated in black and (ii) Z5-12: Ac (n° 9), Z7-14: Ac (n° 19), Z9-16: 
Ac (n° 29) colored in grey. 

In a similar way, the plot of the original data (Table I) on the 
taxon map (Figure 4) allows us to summarize on a simple collection of 
graphs (Figure 6), the links between the locations of the taxa on the 
map and the chemicals, and therefore find chemotaxonomical characters 
for Noctuidae. In Figure 6, the larger the square, the larger the 
frequency. From a general point of view, it is noteworthy that the 
acetates and especially the monounsaturated of general formula Z(x-5)-
x: Ac (i.e.; Z7-12: Ac (Figure 6.11), Z9-14: Ac (Figure 6.21), Zll-16: 
Ac (Figure 6.30)) are the most common chemicals in Noctuidae since 
they are present in all taxa (except Heliothinae and Plusiinae in some 
instances) with relatively large frequencies (large squares). As above, 
β-oxidation chain-shortening steps can be stressed from these large 
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Figure 6. Representation of the original data for each taxon. The 
number after die dot corresponds to the chemical number (Table I). 
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frequencies even if Z5-10: Ac (Figure 6.6) is less present in the species 
of the Noctuid taxa studied and is principally associated with Noctuinae 
(Figure 6.6). 

For the alcohols (Figures 6.1-6.4 and 6.44), it is worth noting for 
example that the frequencies are generally low and that they are never 
present in all taxa. Thus, for example, Z7-12: OH (Figure 6.1) was only 
associated with Noctuinae and Plusiinae. The alcohols under study were 
never evidenced in Acontiinae and very scarcely in Cuculliinae. 

If we focus on the dienes (Figures 6.14, 6.25, 6.26, 6.40, and 
6.42), it appears that these chemicals are often associated with 
Amphipyrinae (except for chemical n° 40) but some of them can be 
found in Noctuinae, Cuculliinae, and Hadeninae. They were not found 
in the other taxa. 

If we consider the aldehydes (Figures 6.32-6.39 and 6.43), we 
can see that they have never been cited as attractants for Plusiinae and 
Acontiinae species. It is also interesting to note that Heliothinae is often 
associated with aldehydes but these chemicals are not specific to this 
taxon. The interpretation of this map could be continued in order to 
stress, for example, specificities for some taxa. This can present an 
interest in crop protection for designing traps for specific species. 
Thus, for example, Z5-14: Ac (Figure 6.18) is principally associated 
with Noctuinae, Zll-14: Aid (Figure 6.36) is associated with 
Hadeninae, El 1-16: Ac (Figure 6.31) was exclusively found in 
Noctuinae and Cuculliinae even if the frequencies are not really 
significant. At the opposite, it is possible to stress chemicals active for a 
large number of species in all taxa. 

Conclusions 

Our results show that by combining CFA with NLM, it is possible to 
benefit from the particular treatment of the chemoreception data 
obtained with CFA but also from the ability of NLM to summarize at 
best the information contained in the pheromone data table on a sole 
map. Indeed, NLM allows us to obtain easily interprétable maps by 
people untrained in statistics while it would have otherwise been 
necessary, as done by Renou et al. (22), to study all the factorial axes 
with the possibility of erroneous interpretations. 

The interpretation of the nonlinear maps is restricted here to 
finding relationships between the taxa and the chemicals. However, our 
graphical approach is open and therefore, any other information could 
be represented on the maps. Thus, for example, it could be possible to 
find links between the existing taxonomy of Noctuidae and their 
classification from the responses to pheromones by simply projecting 
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anatomical information on the map of the taxa. In the same way, any 
information such as habitat could be represented on this map. 

It is important to note that our approach does not only apply to 
the responses of Lepidoptera to pheromones but also to any activity 
related to chemoreception and more generally to any biological activity. 

This paper also demonstrates that there is no single universal 
method to treat a data matrix and that in most cases a combination of 
methods allows one to obtain complementary or supplementary 
information on the relationships within a data matrix. 

Literature Cited 

1. Walker, J .C.; Jennings, R.A. In The Human Sense of Smell; 
Laing, D .G. ; Doty, R.L. ; Breipohl, W., Eds; Springer-Verlag: 
Berlin, 1992; pp. 261-280. 

2. Walters, D .E . In Sweeteners. Discovery, Molecular Design, and 
Chemoreception; Walters, D.E.; Orthoefer, F.T.; Dubois, G .E . , 
Eds; A C S Symposium Series 450; American Chemical Society: 
Washington, D C , 1991; pp. 1-11. 

3. Duchamp, Α. ; Jourdan, F.; Gervais, R. In Odeurs et 
Désodor i sa t ion dans L'Environnement; Martin, G. ; Laffort, P., 
Eds; Tec & Doc - Lavoisier: Paris, 1991; pp. 1-24. 

4. Lawless, H.T.; Glatter, S.; Hohn, C. Chem. Senses 1991, 16, 
349-360. 

5. Beets, M.G.J. In Fragrance Chemistry. The Science of the Sense 
of Smell; Theimer, E .T . , Ed; Academic Press: New York, N Y , 
1982; pp. 77-122. 

6. de Saint Laumer, J.Y.; Chastrette, M . ; Devillers, J. In Applied 
Multivariate Analysis in SAR and Environmental Studies; 
Devillers, J.; Karcher, W., Eds; Kluwer Academic Publishers: 
Dordrecht, 1991; pp. 479-521. 

7. Chastrette, M . ; Rognon, C.; Sauvegrain, P.; Amouroux, R. Chem. 
Senses 1992, 17, 555-572. 

8. Schiffman, S.S. In Computers in Flavor and Fragrance Research; 
Warren, C.B.; Walradt, J.P., Eds; A C S Symposium Series 261; 
American Chemical Society: Washington, D C , 1984; pp. 33-50. 

9. Hopfinger, A.J . ; Walters, D . E . In Computers in Flavor and 
Fragrance Research; Warren, C.B.; Walradt, J.P., Eds; A C S 
Symposium Series 261; American Chemical Society: Washington, 
D C , 1984; pp. 19-32. 

10. Kowalski, B.R.; Bender, C .F . J. Am. Chem. Soc. 1972, 94, 
5632-5639. 

11. Domine, D.; Devillers, J.; Chastrette, M . ; Karcher, W . J. 
Chemometrics 1993, 7, 227-242. 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 1

6,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
01

9

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



280 COMPUTER-AIDED MOLECULAR DESIGN 

12. Devillers, J.; Karcher, W. Applied Multivariate Analysis in SAR 
and Environmental Studies; Kluwer Academic Publishers: 
Dordrecht, 1991. 

13. Barnett, V. Interpreting Multivariate Data; John Wiley & Sons: 
Chichester, 1981. 

14. Everitt, B.S. Graphical Techniques for Multivariate Data; 
Heinemann Educational Books: London, 1978. 

15. Gnanadesikan, R. Methods for Statistical Data Analysis of 
Multivariate Observations; John Wiley & Sons: New York, N Y , 
1977. 

16. Mager, P.P. Multivariate Chemometrics in QSAR: A Dialogue; 
Research Studies Press: Letchworth, 1988. 

17. Stone, M . ; Jonathan, P. J. Chemometrics 1994, 8, 1-20. 
18. Rose, V.S.; Hyde, R .M. ; Macfie, H.J.H. J. Chemometrics 1990, 

4, 355-360. 
19. Devillers, J. In Quantitative Structure/Activity Relationships 

(QSAR) in Toxicology; Coccini, T.; Giannoni, L . ; Karcher, W.; 
Manzo, L . ; Roi, R., Eds; Commission of the European 
Communities: Luxembourg, 1992; pp. 27-41. 

20. Devillers, J . ; Domine, D.; Chastrette, M . ; Karcher, W. In 
Proceedings of the Fifth International Congress: Ecotossicologia 
dei Pesticidi, Analitica di Laboratorio, Biotecnologie, Riva del 
Garda (Italy), September 22-25, 1992; Landi, E . ; Piccolo, Α.; 
Dumontet, S., Eds; Ordine Nazionale dei Biologi, Rome, 1992; 
pp. 111-140. 

21. Chastrette, M . ; Devillers, J.; Domine, D.; de Saint Laumer, J.Y. 
In Proceedings of the 13th International CODATA Conference, 
Beijing, 1992. 

22. Renou, M . ; Lalanne-Cassou, B.; Michelot, D.; Gordon, G.; Doré, 
J.C. J. Chem. Ecol. 1988, 14, 1187-1215. 

23. STATQSAR; CTIS: Lyon, France, 1993. 
24. Thioulouse, J. Computers and Geosciences 1990, 16, 1235-1240. 
25. Devillers, J . ; Karcher, W. In Practical Applications of 

Quantitative Structure-Activity Relationships (QSAR) in 
Environmental Chemistry and Toxicology; Karcher, W.; 
Devillers, J . , Eds; Kluwer Academic Publishers: Dordrecht, 
1990; pp. 181-195. 

26. Doré, J.C.; Gilbert, J.; Ojasoo, T.; Raynaud, J.P. J. Med. Chem. 
1986, 29, 54-60. 

27. Sammon, J.W. IEEE Trans. Comput. 1969, C-18, 401-409. 
28. Domine, D.; Devillers, J.; Chastrette, M . ; Karcher, W. Pestic. 

Sci. 1992, 35, 73-82. 
29. Devillers, J.; Thioulouse, J . ; Karcher, W. Ecotox. Environ. 

Safety 1993, 26, 333-345. 

RECEIVED December 6, 1994 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 1

6,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
01

9

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



Chapter 20 

Comparative Quantitative Structure—Activity 
Relationship 

Insect Versus Vertebrate Cholinesterase 

Corwin Hansch 

Department of Chemistry, Pomona College, Claremont, CA 91711 

To construct a science of quantitative structure-activity relationships 
(QSAR) we must begin to do comparative studies of QSAR in 
many different systems. In this way we can begin to understand 
the similarities in different compounds interacting with the same 
biological system and different biological systems interacting with 
the same compounds. Examples are given for the inhibition of 
insect and vertebrate cholinesterase by a variety of chemicals. For 
the inhibition of vertebrate enzyme the hydrophobic properties of 
the inhibitors is important, but not for fly enzyme. 

Since the initiation of the QSAR paradigm in 1962 (7) thousands of quantitative 
structure-activity relationships have been published for all kinds of organic 
compounds acting on all sorts of organisms or parts thereof (DNA, enzymes, 
organelles, etc.). In addition to these, physical organic chemists have been hard at 
work since 1935 formulating quantitative relationships for organic reactions in 
solution. Our own data bank, which is only a fraction of the literature, contains 
about 6,000 examples about equally divided between biological and organic 
chemistry. The time has come to begin the serious organization and generalization of 
this mass of published and still rapidly growing work Already it is possible to make 
interesting comparisons and generalizations (2-5). We believe that it is particularly 
important to tie the less certain biological QSAR to the more firmly based 
relationships established by physical organic chemists (2, J). Before considering the 
central topic of this report, it helps to illustrate our general approach with a few 
diverse examples. 

Many years ago (3) we derived equation 1 for the colchicine-like mitosis in 
onion root tips caused by simple organic solvents such as: alcohols, acetone, 
CHCI3, xylene, ether, etc. 

log 1/C = 0.95 log Ρ + 0.63 η = 22, r* = 0.916, s = 0.381 (1) 

In this equation, C is the molar concentration of chemical producing the standard 
aberrant mitosis. This seemed a highly esoteric study only of academic interest, still 
we entered it into our bank. Recently, we came across equation 2 by Onfelt 

0097-6156/95/0589-0281$12.00/0 
© 1995 American Chemical Society 
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282 COMPUTER-AIDED MOLECULAR DESIGN 

correlating colchicine mitosis in hamster cells for a different but similar set of 
compounds (3). 

log 1/C = 0.85 log Ρ + 0.27 η = 10, r* = 0.901, s = 0.227 (2) 

The plant and mammalian cells behave in very similar ways and one begins to 
wonder if perturbations of mitosis by solvents could be responsible for some kinds 
of birth defects. 

Compounds of type I have been extensively studied as agents for cancer 
chemotherapy. 

C H 2 C H 2 Y C H 2 C H 2 Y 

Variations of I, in which Y = C l , Br, I, OSO^R, have been shown to react with DNA 
and other nucleophilic agents. Correlation equations for reactions of I with 
nucleophilic agents (water, 4-nitrobenzylpyridine, calf serum) are based on σ -
constants of X . The following values of ρ (slope) were found: -1.73, -1.92, -2.02, 
2.02, -2.31 (mean = -2.00) (3). Electron releasing groups promote the reaction with 
nucleophiles, presumably by way of the intermediate onium compound. 

Studies of the anticancer value of these aniline mustards for mice with 
various forms of cancer yield more complex QSAR, but with σ - terms having the 
following values of p: -0.96, -1.31, -1.52, -1.70 (mean = -1.37). In the case of the 
model systems of H2O, pyridine and serum the substituents play a more important 
role (more negative) than in the in vivo reaction. This suggests that in vivo a more 
reactive nucleophile may be involved. This might not be DNA although DNA is 
usually assumed to be the target since it has been shown to be alkylated by the 
mustards. Since the mustards are so highly reactive it seems unlikely that they could 
avoid reacting with NH2 or SH groups of important macromolecules. 

Equation 3 correlates LD50 data for aniline mustards acting on rats (5). 

log 1/C = -1.38 σ - + 0.411 + 4.13 η = 17, r 2 = 0.865, s = 0.267 (3) 

And equation 4 correlates LD50 for X-C6H4SCH2CH2Br acting on red spider eggs 
(3). 

log 1/C = -1.42 σ -+1.491 + 4.44 η = 14, r 2 = 0.914, s = 0.113 (4) 

In equation 3 the indicator variable I = 1 when Y = Br. 1=0 when Y = Cl or I. In 
equation 41 = 1 for examples where X = COOR. The esters probably hydrolyze to 
yield a more hydrophilic carboxylate ion. The lipophilic ester group may be acting as 
a prodrug unit. The values of ρ for equations 3 and 4 are essentially the same and 
agree with average value found for the four examples of antitumor activity in mice. 
It has been assumed that for X-C6H4SCH2CH2Br the same type of onium 
intermediate is essential. The question arises, why are the values of ρ from the 
model systems higher than for the in vivo systems? It has been shown that the 
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mustards react with lone pair electrons of the DNA bases, but these would not differ 
much from the benzylpyridine in nucleophilicity. We believe that other nucleophiles, 
such as NH2 or SH on critical macromolecules, may also be involved. 

Much more complex QSAR have been derived showing the different SAR for 
benzylpyrimidines inhibiting dihydrofolate reductase from vertebrate and bacterial 
enzyme (6). It turns out that hydrophobic substituents play a crucial role for 
inhibition of the vertebrate enzyme, while steric properties are more important for 
bacterial enzymes. These comparative QSAR point the way to the design of more 
selective drugs. We now consider the case of cholinesterase inhibitors where we 
find a similar situation. 

Insect Cholinesterase 

One of the advantages of the above mentioned studies of dihydrofolate reductase 
inhibitors is that x-ray crystallographic structures of both types of enzymes support 
the QSAR. In the case of cholinesterase only the structure of the enzyme from the 
Torpedo Califormca has been established (7). 

The following QSAR have been derived for the action of the indicated 
inhibitors of fly cholinesterase. 

Ο 

.0-P(OEt)2 (8) 

X 

log 1/C = 2.66 σ - - 0.47 E s-3 + 4.59 η = 12, r 2 = 0.953, s = 0.341 (5) 

Ο 
II 

χ 

log 1/C = 2.94 σ - - 0.54 Ε*-3 + 4.78 η = 15, r 2 = 0.895, s = 0.525 (6) 

Ο 
II 

log 1/C = 2.42 σ - + 4.31 η = 7, r 2 = 0.970, s = 0.309 
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Ο 

C H 3 v ^ s / 0 - P ( O E t ) 2 (U) 

C H 3 

log k 2 = 2.62 σ - +0.77B5 +0.84 η = 10, r 2 = 0.962, s = 0.435 (8) ο 
O-P-OEt (12) 

I 
R 

j2r 

log k 2 = 2.71 E£ + 8.12 η = 16, r 2 = 0.893, s = 0.524 (9) 

log k 2 = 1.25 E£ + 6.06 η = 7, r 2 = 0.947, s = 0.292 (10) 

Ο 
O P ^ R (14) 

0 2 N 

log k 2 = 1.28 E£ - 1.65 σ * + 7.00 η = 12, r 2 = 0.903, s = 0.273 (11) 

A II 
S-P(OR)2 (15) 

log 1/C = 1.63 MR4 + 1.441 + 5.90 n = 12, r 2 = 0.876, s = 0.397 (12) 
I = 1 f or R = Et and 0 f or R = C H 2 C H M e 2 

o 
S-P-OEt (16) 

N H , 

log k 2 = 1.35 σ - + 1.45 n = 8, r 2 = 0.956, s = 0.050 (13) 
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^ ^ 0 - P - C 6 H 5 (77) 

OEt 

log 1/C = 2.13 σ - + 0.69 M R 3 + 4.35 η = 11, r 2 = 0.928, s = 0.314 (14) 

Ο 
O C N H C H 3 (18) 

log 1/C = 0.56 MR3,4,5 + 1-56 M R 2 - 0.61 Es-3 - 0.94 σ 2 + 1.43 CHG 
- 0.23 M R 2 - 5.24 (F-2,6)2 + 3.47 F 2 ,6 + 0.66 RGMR - 0.62 HB 
- 0.052 ( M R 3 ) 2 - 0.56 Es-2 · Es-6 + 3.46 
η = 269, r 2 = 0.796, s = 0.485 (15) 

Observe that in equations 5 through 15 no hydrophobic terms appear, only 
steric and electronic factors seem important. Equations 5, 6 and 15 are of interest 
because of the negative Es term for meta substituents (Es-3). The coefficients are 
essentially the same for these two different types of inhibitors (carbamates and 

phosphates). Recall that values of E s or Hancock's modified E£ values are negative. 
This tells us that bulky groups in this position produce a positive steric effect. This 
important feature of inhibitors is also brought out by the MR for meta substituents in 
equations 19 and 20. The sterimol parameter B5 uncovers (equation 8) a positive 
steric effect for substituents flanked by methyl groups. It is difficult to interpret this 
term since one would expect that groups such as NO2 would be less effective if 
twisted out of the ring plane. Nevertheless, σ - is the parameter of choice and its ρ 
value is in the usual range. The values of ρ for the comparable inhibitors of 
equations 5, 6, 7, 8, 14, 16 and 19 are: 2.66, 2.94, 2.42, 2.62, 2.13, 2.87 and 
2.13 with mean = 2.54. 

Probably the most informative set of probes for the hydrophobic character of 
the fly cholinesterase is the large set of carbamates of equation 15. Despite a 
determined effort no evidence for a hydrophobic interaction could be uncovered. 
Again a negative Es-3 term with a coefficient similar to those of equations 5 and 6 
was found. This hallmark of meta substituents suggests that the carbamate binding 
is not unlike that of the phosphates. 

Devising a mathematical relationship correlating how a set of organic 
chemicals affects a receptor of unknown structure and unknown flexibility is every 
bit as hard as it sounds. We have no absolute standards, no idea of what the best 
parameters are. We are still in the exploratory stage. At this point in time our best 
guide is not statistics, as necessary as they are, but correlating with other QSAR to 
confirm that what we are finding is not artifactual. The uniformity of ρ and positive 
steric effect of meta substituents assure us that we are on the right track. The rather 
poor correlation of equation 15 shows us that we have much that we still do not 
understand. 

Now consider the action of the inhibitors on flies brought out by equations 
16 through 20 for the LD50 against house flies. 
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286 COMPUTER-AIDED MOLECULAR DESIGN 

0-P(Et)OMe (70) 

log 1/C = 2.87 σ + 3.14 η = 7, r 2 = 0.955, s = 0.304 ( 16) 

O-P-OEt (79) 

0 2 N 

log 1/C = -0.67 π + 5.94 η = 10, r 2 = 0.861, s = 0.253 ( 17) 

O 

O-P-OEt (9) 

C H 3 

log 1/C = -0.34 log P + 1.84 o - + 6.87 n = 25, r 2 = 0.904, s = 0.363 (18) 

S 

^O-P-OEt (17) 

C 6 H 5 

X 

log 1/C = 2.13 σ - + 0.69 M R 3 + 4.35 n = 11, r 2 = 0.927, s = 0.314 (19) 

O 
O C N H C H 3 (20) 

X 

log 1/C = 0.58 log P - 0.16 (log P) 2 + 0.40 M R 3 + 2.73 F-2 - 3.45 (F-2)2 

-0.54 σ - +7.90 
n = 47 , r 2 = 0.870, s = 0.150, log P 0 = 1.8 (20) 

In eq 20, F-2 is field/inductive parameter for ortho substituents, while σ " applies to 
other substituents. 

Even with the whole fly the hydrophobic terms are weak except for the more 
hydrophilic carbamates of equation 20. Equations 16 and 19 lack these terms and in 
equations 17 and 18 the hydrophobic terms have negative coefficients. In equation 
19 the M R 3 term is comparable to the Es terms in equations 5, 6 and 15 and the M R 
term in equation 14. The optimum F of equation 20 is about 0.40. Smaller and 
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larger values decrease activity. Optimum values of electronic terms in equation 15 
are also low. Thus, the electronic effect of substituents on carbamates is vastly 
different from that on phosphates. Note that the hydrophobic terms in the whole fly 
equations account for inhibitor interactions with material other than enzymes 
(proteins, lipids). 

Vertebrate Cholinesterase 

There are a large number of studies of the inhibitor of cholinesterase from various 
vertebrates, our present data base contains 40 examples of enzymes from eel, 
human, rabbit, sheep and bovine plasma and erythrocytes which all contain 
hydrophobic terms. The following are representative examples. 

Inhibition of horse erythrocyte enzyme by 

Ο 
II 

OCH 2 CH 2 SP-OEt (21) 
I 

C H 3 

log k 2 = 1.75 log Ρ - 0.23 (log P ) 2 - 6.24 
n= 12, r 2 = 0.845, s = 0.166, log P Q = 3.0 (21) 

Inhibition of human plasma enzyme by 

COOC2H5 

(22) 

log 1/Ki = 0.38 π + 3.58 η = 10, r 2 = 0.980, s = 0.059 (22) 

Inhibition of human plasma enzyme by 

Ο 
/ \ o H 2 r N ^ ^ - C ^ C l f t H, , -N" > - O N H R ( 2 5 ) 

log 1/C = 0.74 π + 4.12 n = 9, r 2 = 0.970, s = 0.103 (23) 

Inhibition of electric eel enzyme by 

-CH 2 N + (CH3) 3 (24) 

X 

log 1/Ki = 0.96 π + 0.44 Eg + 1.12 HB + 3.83 n =13, r 2 = 0.968, s= 0.190 (24) 
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288 COMPUTER-AIDED MOLECULAR DESIGN 

Inhibition of bovine erythrocyte enzyme by 

Ο 
X - C 6 H 4 O C N H C H 3 (25) 

log 1/K = 1.40 π-23 + 0.30 π 4 + 1.66 σ° -1.78 σ 2 + 0.17 Eg + 0.77 F-2 
+ 1.36 HB + 0.07 
η = 53, r 2 = 0.897, s = 0.238 (25) 

The above QSAR was first published using M R (molar refractivity) instead of π 
(25). We have found that π yields a better correlation. The parameter σ° is derived 
from phenylactic acids and applies where resonance is not involved. For all 

instances where positive σ° values occur, these substituents are parameterized by o\, 

and for negative values σ 2 is used. F and Es apply only to ortho substituents and 
HB is a hydrogen bonding constant for certain substituents. It is interesting to 
compare equations 15 and 25. No evidence could be found for using hydrophobic 
terms in equation 15, but in equation 25 they are the most important parameters. 
However, there is collinearity between π and M R so that steric effects may also be 

involved in equation 25. Since the positive σ° term tends to cancel σ 2 , we again 
find electronic effects to be small with carbamates. 

Following are a few examples of QSAR for vertebrate enzymes which do not 
contain hydrophobic terms. 

Inhibition of rat brain enzyme by 

CH 

X 

(26) 

log 1/C = 0.73 σ - 0.40 E s-3 + 3.42 η = 10, r 2 = 0.884, s = 0.199 (26) 

Inhibition of horse serum enzyme by 

Ο 

X-C 6 H 4 COCH 2 CH 2 N(CH3 )3 (27) 

log Κ = 1.14 σ+ - 0.02 η = 6, r* = 0.922, s = 0.187 (27) 

Inhibition of bovine enzyme by 

C F 3 O 
X-C 6 H 4 C=NOCNHCH3 (28) 

log 1/C = 1.60 F-2 + 1.86 MR-2 + 6.47 n = 12, r 2 = 0.857, s = 0.301 (28) 
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Inhibition of bovine erythrocyte enzyme by 

C H 3 Ο 

X-C 6 H 4 N-CH 2 CH 2 SP(OEt ) 2 (29) 

log 1/Ki = 1.73 σ + 4 . 0 3 η = 7, r 2 = 0.836, s = 0.191 (29) 

Why hydrophobic terms are lacking in equations 26 through 29 is not clear. 
The X-ray crystallographic structure of the enzyme from Torpedo Californica clearly 
shows a large hydrophobic pocket which rationalizes the many QSAR from 
vertebrate enzyme containing hydrophobic terms. The Es term in equation 26 is 
similar to that seen in equations 5,6 and 15. It is similar to the M R term in equations 
19 and 20. However, it is different from the Eg term in equation 25. A point which 
must be kept in mind is that the variation in the size of the substituents in most of the 
studies is not large. Increasing the size of substituents will sooner or later change the 
shape of a particular equation. 

Equation 30 illustrates the different interaction of substrates of the type 
R C H 2 C H 2 O C O C H 3 (30) with enzyme from Ekctrophorous electricus. 

log kcaT/KM = 1.31 σι + 1.64 M R - 4.34 η = 14, fi = 0.941, s = 0.302 (30) 

Examples where R is a charged group (eg. (CH3)3N+) or neutral groups (eg. 
(CH3)3Q are equally well fit Clearly R is not binding in hydrophobic space. There 
may well be more than one mode of binding. In Electrophorous electricus enzyme 
there is a very large hydrophobic active site. Molecular modeling has obtained 
evidence which rationalizes equation 24 (37). 

In summary, the above analysis leads us to believe that there is a very 
significant difference in the hydrophobic character of fly (and possibly other insects) 
and vertebrate cholinesterase. It seems likely that advantage could be taken of this 
difference in the design of more selective insecticides. 

The above brief review shows that the studies of pesticides initiated by 
Fukuto and Metcalf (11-14) in the fifties using Hammett constants were quite 
prescient. 

Parameter Glossary 

The values for the various physicochemical parameters have been taken from 
reference 32 where there is a more detailed discussion of their origin and use. 

01 Normal Hammett constant defined from the ionization of benzoic acids: 
Σ Χ = log Κχ - log KH where X refers to a substituted benzoic acid and Η to 
benzoic acid. 

σ -: Defined analogously to σ using the ionization constants of phenols. Used when 
there is derealization of a negative charge between substituent and reaction 
center. 

σ+: Defined from the S N I solvolysis of X-C6H4C(CH3)2C1. Used when there is 
delocalization of a positive charge between substituent and reaction center. 
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290 COMPUTER-AIDED MOLECULAR DESIGN 

F and oj: Different versions of field/inductive constants 

P: Octanol/water partition coefficients 

jc Hydrophobic parameter for substituents, πχ = log Ρχ - log Ph 

Eg: Taft's steric parameter based on the acidic hydrolysis of XCOOCH3, 
Es = log k x - log k H 

e£: Hancock's form of Es corrected for hyperconjugation 

MR: Molar refractivity, MR = ( n 2 'V n 2 + 2) ~-p where η = index of refraction, 
MW = molecular weight and d = density. Largely a measure of bulk because 

MW 
of the overriding importance of —7— 

HB: Hydrogen bonding indicator variable. 

The numbers associated with the above parameters indicate the position of the 
substituent on the aromatic ring. 
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Chapter 21 

Effect of Tautomeric Equilibria 
on Hydrophobicity as Measured 

by Partition Coefficients 

Albert J. Leo 

Department of Chemistry, Pomona College, Claremont, CA 91711 

The tautomeric form of a solute which is preferred by any given non-
polar solvent depends largely on it's hydrogen bond donor/acceptor 
strength and it's polarity—the same properties which determine its 
partition coefficient, P, between water and that solvent (1). 
Octanol/water and chloroform/water log Ρ values can give useful 
predictions of tautomeric ratios, and help predict transport rates and 
bioaccumulation of pesticides and drugs that fall into this class. 
Alkane/water and ester/water log Ρ values complete the "critical 
quartet" (2) and can describe more completely solute-solvent behavior. 

It is to be expected that the tautomeric forms of a given drug or pesticide molecule 
will react differently at the receptor site and thus they may evoke different biological 
responses. Some effort has been made to determine the effect of the solvent upon the 
tautomeric equilibrium constant of some important bioactive molecules, such as the 
purine bases (3). See Figure 1A. It is not surprising that a non-polar solvent can 
drive the equilibrium away from the form 'normally' expected in an aqueous medium. 
It can thus greatly influence the tendency of the solute to self-associate. Both 
tautomers of the 6-dimethylamino analog can dimerize, but a higher degree of 
association is not favored. As is noted for almost all enol/keto tautomers, the enol is 
favored by non-polar solvents and the keto by polar ones. The parent isoguanine can 
associate beyond the dimer stage. It forms helical gels in aqueous solution, and it 
surely is in the keto form as it does this (Figure IB). The capability of existing in 
two tautomeric forms can affect the rate of the 'random walk' process which is 
needed to reach the active site. Depicted in a very simplified fashion in Figure 2, a 
tautomeric solute might traverse the serum or cytosol largely as the keto form, but be 
more effective in crossing a non-polar membrane as the enol. U V and IR absorption 
spectra were employed to obtain the results shown in Figure 1, and, of course, these 
have been the preferred techniques (along with NMR) to determine tautomeric ratios. 
However, interpretation of these spectra are not always as straightforward as one 
might hope for, as will become apparent later in this paper, and so results from an 
entirely different methodology can be a useful addition to the picture. 

0097-6156/95/0589-0292$12.00A) 
© 1995 American Chemical Society 
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) NMe 2 jL k NMe 2 A | k 

/ N ^ O H N

 A l k / H N v ^ k | f 
NMe? I 

Enol favored by K e t o favored by 
Non-Polar Solvents P o l a r Solvents 

90% in Ethyl Acetate 90% in Water 

Dimerization Negligible at 10 4 M . 

Other Solvents Studied: ethyl acetate chloroform DMSO 
acetonitrile ethanol methanol 
formamide 

Figure 1. Tautomerism and Association in Biologically Important Solutes 
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294 COMPUTER-AIDED MOLECULAR DESIGN 

Tautomers Stabilized by Internal Hydrogen Bonds: β-Dicarbonyl Solutes 

There are well-established methods of assigning fragmentai values to 'isolated' 
carbonyl, hydroxyl, amino and imino groups so that their sum contributes to an 
estimate of the octanol/water log Ρ (log P o c t ) of the solute (4,5). When these groups 
are present in a tautomeric solute, the observed log P 0ct will most generally lie 
somewhere in between the values calculated for the two structural forms, with the 
enol form calculating higher due to its lesser hydrogen-bond-acceptor (HBA) 
strength, b. See Figure 3. In the case of acetylacetone, where spectral evidence 
indicates that about 83% of the solute is in the keto form in water (6), the calculated 
(5) log Ps bracket the observed value but seem to indicate that the wet octanol may 
favor the enol form. Even at relatively high concentrations the octanol/water 
partition coefficient is constant over a ten-fold concentration range, indicating that 
intramolecular hydrogen bonding must prevail over self-association via 
/ntermolecular bonds. 

A reliable fragmentai procedure is not available for the calculation of 
chloroform/water log Ρ values. Spectral evidence indicates that the tautomeric ratio 
for acetylacetone in chloroform is just about the reverse of what it is in water; i.e., 
86% is in the enol form. 

In the case of ethylacetoacetate, spectral evidence (6) points to a very small enol 
content in water. It must not be much higher in wet octanol, because the CLOGP 
value (5) for the keto form is even a bit higher than the measured log P o c t and the 
CLOGP value for the enol form is much higher still. Mills and Beak (6) use N M R 
data to calculate an 8% enol content in chloroform. This seems a bit strange, since 
the chloroform/water partitioning data does show a concentration dependence, 
indicating that some self-association must be taking place. This could hardly occur 
without the enol form being present at significant levels. 

The measured log P 0ct for diethylmalonate is also very close to the calculated 
value for the di-keto form and far from the enol form. This indicates that in wet 
octanol diethylmalonate is mostly in the keto form that water also favors. There is no 
concentration dependence in the partition coefficients in either octanol/water or 
chloroform/water indicating an absence of association. 

A later section will deal with the calculation of effective hydrogen bond donor 
strength (HBD) from octanol and chloroform log Ρ values. At this point one can 
note that for all three compounds in Figure 3 the effective HBD calculates as zero or 
slightly negative. However, this is not a true indicator of possible enol level, because 
intramolecular Η-bonding would effectively negate any tendency to donate to the 
solvent. 

Tautomerism Where No Internal Η-Bond is Possible (Figure 4) 

4-Hydroxypyridine is known to be predominantly in the pyridone form in the vapor 
state and in most polar solvents. If any solvent promotes association, it must be of 
the head-to-tail variety. The octanol/water log Ρ of the keto form is calculated 
satisfactorily, while the enol form would be expected to be over two log units more 
lipophilic. This is strong evidence for the dominance of pyridone in wet octanol as 
well as water. No data is available to evaluate the enol/keto ratio in chloroform. 

Roughly the same results are seen for the 4-quinolone where the octanol/water 
partitioning data indicate that wet octanol supports as little as 10% as the enol form. 
However, based on estimation of the effective HBD strength (ea, as explained 
below), it would seem that the enol form dominates in chloroform. This is not 
unexpected, since it has been proposed that benzene ring annelation should shift the 
equilibrium toward the enol form (7). 

Wheland (8) reports that the 9-anthrone is the more stable of the two tautomers, 
even though each can be separately isolated. It is difficult to measure the ratio in 
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A. Acetylacetone 

YY = YV 
Log Poet 

Meas. 
CLOGP 

In: Water 
Chloroform 
Octanol 

+0.40 
-0.46 

14%* 
«30% 

B. Ethylacetoacetate 

YV OEt 

Log Ρ oct 
Meas. +0.24 

CLOGP +0.33 
In: Water 93%* 

Chloroform 92%* 
Octanol >90% 

C. Diethylmalonate 

Ο ο 

HO 

+0.66 Association 
17%* No Dimer 
86%* No Dimer 

«70% No dimer 

YY 
Ο HO 

OEt 

+0.75 Association 
7%* No dimer 
8%* Dimer 
<10% No dimer 

EtO. YV .OEt 

Log Ρ oct 
Meas. +0.96 

CLOGP +1.13 
In: Water 

Chloroform ? 
Octanol 

HO 

+2.10 Association 
<2% No dimer 

? No dimer 
<2% No dimer 

•Tautomeric Ratios by Spectroscopy 

Figure 3. Tautomerism in β-Di-Carbonyl Solutes 
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water, but in the polar solvent, DMSO, both U.V. and I.R. measurements seem to 
show a definite preference for the enol form (6,9). This is surprising since the same 
investigators find that in non-polar solvents, such as carbon tetrachloride and 
cyclohexane, spectral data indicate a negligible fraction of enol present by these 
methods. This is nearly the reverse for the b-dicarbonyls where non-polar solvents 
definitely favor the enol form and polar solvents favor the keto. With the highly 
polar DMF as solvent, U.V. finds the enol slightly favored (6) while I.R. and N M R 
finds the keto highly favored (9). Obviously there is some inconsistency in the 
determination of the tautomeric ratio by spectroscopic measurements, and so it is 
interesting to compare them with estimation from partitioning measurements. 

Estimation of the anthrol/anthrone ratio by comparison of calculated and 
measured octanol/water partition coefficients (Figure 4) would lead one to expect 
nearly 50% of each in wet octanol. This is consistent with the values found in 
DMSO. In chloroform, anthrone is seen by U.V. as entirely in the keto form, and by 
I.R. it is calculated as nearly that high~88%. However, partitioning between 
chloroform and water leads one to predict that the enol form predominates in 
chloroform. This is consistent with finding for acetylacetone but is at odds with the 
spectral data just cited. 

As seen in Figure 5, the difference between log P o c t and l°g Pelf 0°g Ρ 
chloroform/water) has been found to depend largely upon the solute HBD strength, a, 
and the solute volume (Taft, R.; Leo, Α.; An via, F.; Vasanwala, R.; Raczynska, E. in 
press). Both the anthrol and anthrone tautomeric forms of the solute fit the criteria 
upon which Equation (1) in Figure 5 is based. The effective HBD strength of any 
solute, ea, is then defined by Equation (2) of Figure 5, which can easily be calculated 
from the difference in the two log Ps and the simple molecular volume, V x By this 
method, phenol has a value of 0.60, while a2 H from the 1:1 complex in CCI4 is 0.58. 
1-naphthol is seen to have a HBD strength of 0.67, which is in reasonable agreement 
with the directly determined a 2 H value of 0.61. By contrast, the ea values calculated 
for 9-anthrol is much greater, indicating: (1) the fraction of keto form in the 
chloroform phase cannot be very significant; and (2) benzo-fusion enhances HBD 
strength. Obviously there is a discrepancy between the conclusions reached from the 
spectroscopic data and those deduced from chloroform/water partitioning. Further 
investigation would seem worthwhile to determine which method is in error. 

As seen in Figure 6, the determination of HBD strength of 2-pyridinol/2-
pyridone supports the prevalence of the pyridone form in chloroform. An enhanced 
N H is expected to have a HBD strength in the vicinity of that found, 0.40, while an 
enhanced phenolic OH should be much higher. In this case, N M R data also seems to 
support the pyridone form in (deutero)chloroform. 

The picture is quite different for 4-quinolol/4-quinolone, where the HBD 
strength by differential partitioning is seen to be much higher than any enhancement 
of N H could give. This is solid evidence that the 4-quinolol is dominant in the 
chloroform phase. 

When a chlorine is substituted at the 6- position of 2-pyridinol (7b), the HBD 
strength is increased beyond that which is expected for the enhanced N H as seen in 
Figure 7. This constitutes evidence for some enol form being present in chloroform. 
The measured octanol/water value falls midway between the calculated value for the 
two forms, indicating that even the relatively polar wet octanol supports considerable 
amount of 2-pyridinol when the electrophilic chlorine is present. This type of enol 
enhancement has been noted previously by Katritzky et al. (7). 

It might be expected that only the enol form of 3-pyridinol need be considered, 
and it has been shown to predominate in dioxan solutions (7). The rather odd keto 
structure on the right of Figure 8 has been postulated as one component (11), but this 
has not received much support. Since the measured log Poct l s much lower than 
predicted for the simple enol (D = -0.45), it appears likely that the zwitterionic form 
might contribute as much as 25% to solute properties in this solvent pair. The 
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A. 4-Pyridinol/Pyridone 

HO 

Log Poet 

In: 

Meas. 
CLOGP +0.93 

Water 
Octanol 

<2% 
<2% 

-1.30 
-1.28 

B. 4-Quinolol/Quinolone 

Log Ρ oct 

In: 
Water 

Octanol 

Meas. 
CLOGP +2.32 

C. 9-Anthrol/Anthrone 

Log Ρ oct 

+0.58 

<3% 
10-15% 

Chloroform » 5 0 % ? 

OH 

Meas. 
CLOGP 3.34 

In: 
DMSO 60%*,73%** 
DMF 57%*,8%** 
Octanol -50% 

Chloroform 12%** 
*100% 

+0.31 

>97% 
85-90% 
« 5 0 % ? 

3.66 
3.82 

40%*,27%** 
43%*,92%** 

^50% 

=sQ% 

Tautomeric Ratio by: *U.V.; **I.R. or NMR 

Figure 4. Tautomers with no Intramolecular Hydrogen Bond 
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298 COMPUTER-AIDED MOLECULAR DESIGN 

Log P(Oct/Clf) = 3.23 a 2 " - 1.00 V^lOO - 0.03 (1) 

η = 81; r = 0.992; s = 0.12 

(X2 H is HBD descriptor from 1:1 complex in CC14 using series 
of reference bases; W^lOO is McGowan molecular volume2 

εα is effective HBD value applicable to multiple donor solute 

36 of the solutes have single HBD sites. 
45 have no HBD sites, but have single & multiple HBA sites 

εα = [log P(Oct/Clf) + 1.00OW100) + 0.03] / 3.23 (2) 

1-Naphthol: 

εα = [2.84 - 1.82 + 1.144 + 0.03] / 3.23 = 0.67 (3) 

9-Anthrol: 
εα = [3.61 - 2.50 + 1.513 +0.03] / 3.23 = 0.82 (4) OH 

Figure 5. Estimating Effective Solute Η-Donor Strength of Tautomers 

2-Pyridinol/Pyridonc: 
εα = [-0.58 -(-1.12) + 0.734 + 0.03] / 3.23 = 0.40 (5) 

Close to the HBD value for an 'enhanced' NH since: 

εα « 0.31 ο.4ΐ 

NMR supports pyridone form in CDCI3 

4-Quinolol/Quinolone: 
εα = [0.58 - (-1.10) + 1.103 + 0.03] / 3.23 

ε α = 0.14 

0.87 (6) 
NH 

*—Ν 
0.41 

OH Ο 
Supports HBD as 'enhanced' OH since εα is over 2X that of 

'enhanced' NH; i.e. takes Quinolinol form in chloroform 

Figure 6. Estimating Effective Solute Η-Donor Strength (cont.) 
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6-Chloro-2-Pyridinol/Pyridone: 
ε α = [0.93 - 0.0 + 0.856 + 0.03] / 3.23 = 0.56 (7) 

C L M O H C L . N H 

Log Poct 
Meas = 0.93 
OJOGP 1.71 0.34 

Partitioning in CHC13 shows concentration dependence; 
i.e.: Some association in non-polar phase. 

Enol favored by electron-attracting group(s) near nitrogen 
atom in pyridinols. 

Figure 7. Estimating Effective Solute Η-Donor Strength (cont.) 

a - cr- σ ; 

Log Poct Meas. = 0.48; CLOGP = 0.93; Δ = -0.45 

Full Zwitterion Correction = -2.30 

εα = 0.82 

Figure 8. Tautomeric Forms of 3-Hydroxypyridine D
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Examples of R Groups: 
ο ο 

NHMe,NMe2, NHC02Et, NHC2H40H 
ο ο 

Αν. Dev. CLOGP for 29 Analogs = 0.12 

A. 2-Methylaminonaphthoquinone: 

Log Ρ oct.: Meas. = 1.74; CLOGP = 1.66; Dev. = +0.08 

B. 2-Dimethylaminonaphthoquinone: 

Log Ρ oct: Meas. = 1.90; CLOGP = 2.07; Dev. = -0.17 

Primary Amine Anomaly 
Ο 

2-Arrûnonaphthoquinone ( ^ ^ s ^ ^ s V x N H 2 

Log Ρ oct 

Meas. = 1.77; CLOGP = 0.76 Dev. = +1.01 

Intramol-H-bond unlikely; Spectral evidence for imine lacking. 

Figure 9. Anomaly in Quinones with Primary Amine Substituents 

ο OH 
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correction factor needed for this 'tautomeric zwitterion' is much lower than for a true 
zwitterion, such as an amino-acid which requires a correction of -2.3. In this case 
the observed high HBD strength is not much help in deciding the tautomeric ratio in 
chloroform, because one would predict that the N + H would be as strong an H-donor 
as an enhanced phenol. 

When one finds a difference between a measured log Po ct and a value calculated 
by a method based on fragments (e.g.,CLOGP), it is very risky to attribute that 
discrepancy to a specific phenomenon, such as tautomerism or intermolecular H-
bonding, without some supporting physical evidence. But when one knows what 
interactions CLOGP does and does not consider, such discrepancies can be at least 
thought provoking. Figure 9 provides an example where CLOGP performs 
satisfactorily in predicting log Ρ for a large number of benzoquinone and 
naphthoquinone analogs, including 29 specific analogs which are mono or di-
substituted with secondary or tertiary amino groups. As shown the deviation for the 
methylamino and dimethylamino naphthoquinone averages only 0.12, which is about 
the average deviation for the whole set. By contrast, the primary amino analog is 
miscalculated by over one log unit. In Figure 9, intramol-H-bonding in the amino-
and methylamino- analogs would be predicted to be weak, due to the unfavorable 
bond angles required. An imine tautomer could be postulated, but there seems to be 
no reports of spectroscopic evidence for its existence. Thus even when the partition 
coefficient approach does not yield clear-cut answers, it often can highlight certain 
anomalies which are deserving of further investigation. This is especially true when 
the structural features appear in biologically important compounds, such as the 
amine-substituted benzoquinones which are present in the promising antineoplastic 
maytansine analogs. 

Conclusions 

There is little doubt that spectroscopic measurements give the most definitive 
evidence for establishing tautomeric ratios in various solvents. Yet quite often these 
methods give results which do not agree amongst themselves, and they may also 
appear inconsistent with physical-chemical principles. At least in these instances, 
data from partition coefficients, although not as definitive, may still yield valuable 
information and suggest paths for further investigation. 
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Chapter 22 

Structural Analysis of Carbyne Network 
Polymers 

Scott A. Best, Patricia A. Bianconi, and Kenneth M. Merz, Jr. 

Department of Chemistry, Pennsylvania State University, 
University Park, PA 16802 

Molecular dynamics simulations of oligomers of the recently reported 
polycarbyne network backbone polymers indicate that calculated bond 
lengths between adjacent carbon backbone atoms are very long 
compared to the bond distance of a C-C single bond. Some degree of 
bond cleavage is theorized to occur between adjacent carbon atoms of 
the polymers' network backbones, resulting in the formation of 
biradicals. This theory is supported experimentally by the polymers' 
electronic absorption spectra, their degrees of polymerization, and 
their ESR spectra, which show a decreasing signal as the steric bulk 
between adjacent carbons is decreased. 

The synthesis of the first member of a new class of carbon-based polymers, 
poly(phenylcarbyne) [PhC] n (1), has recently been reported (7,2). This polymer's 
stoichiometry is identical to that of poly(diphenylacetylene) (3,4) yet its structure is 
significantly different. Unlike the polyacetylenes, which are linear polymers whose 
backbones consist of alternating single and double bonds, poly(phenylcarbyne) has a 
random network backbone which consists of sp3-hybridized carbon atoms bonded 
via carbon-carbon single bonds to three other backbone atoms and one phenyl 
substituent. This backbone structure is unique in carbon-based polymers and has 
been found to confer novel properties and reactivity on 1, as, for example, pyrolytic 
conversion to diamond or diamondlike carbon at atmospheric pressures (7). Because 
of this pyrolytic conversion, numerous applications for this polymer can be 
envisioned. 

Although the network backbone microstructure of poly(phenylcarbyne) and 
its Group 14 congeners (7,2,5-9) has been confirmed by 1 3 C and ^ 9 S i NMR, the 
macrostructures of this class of polymers have not been established. The seemingly 
completely random assembly of the polymer backbones defeats any spectroscopic or 
diffraction characterization technique, since no two polymer molecules in a given 
sample may display identical macrostructures and therefore no one macrostructure 
gives rise to enough characteristic signal to be unequivocally detected. Information 
about the macrostructure of the polymers is important, however, as polymer 
macrostructure appears to influence the materials' properties (see below). We have 
therefore used molecular modeling techniques to provide insights into possible 
macrostructures for the polycarbyne class of network backbone polymers, and to 

0097-6156/95/0589-0304$12.00A) 
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22. BEST ET AL. Structural Analysis of Carbyne Network Polymers 305 

establish what effects varying the steric size of the polymers' substituents may have 
on preferred macrostructures. We report here a series of Molecular Dynamics (MD) 
simulations of poly(phenylcarbyne) and related network carbyne polymers which 
examine the structural characteristics of this system. We also report ESR studies on 
these carbyne polymers which supply further insight into the structural characteristics 
of this class of materials. 

Experimental 

The M D simulations were carried out using the all-atom A M B E R force field (10). 
The simulations were done in the gas phase at a constant temperature (300K) (77) 
with a 1.0 femtosecond time step. A l l nonbonded interactions within the molecule 
were considered. The potential charges for the molecule were obtained by using the 
electrostatic potentials calculated from M O P A C 5.0 (72) using the M N D O 
Hamiltonian (73) and electrostatic fitting (14). A distance-dependent dielectric 
function was used for all simulations to mimic the effect of solvent (75). Initially the 
structures were minimized for 2000 steps using both steepest decent and conjugate 
gradient minimization methods. The simulations were run for a total of 160 
picoseconds (60 ps equilibration, 100 ps sampling), except for the larger phenyl 
substituted oligomer 6 which was run for 200 ps (100 ps equilibration, 100 ps 
sampling). This larger oligomer, 6, was equilibrated for 100 ps rather than 60 ps due 
to the increase in the size of the network. Polyphenylcarbyne) (1) and 
poly(methylcarbyne) (2) were represented by small network models 3 and 4, and the 
parent polycarbyne [HC] n by small network model 5. Larger network models 6 and 
7 were also constructed to represent polymer 1 and the parent polycarbyne. These 
models are depicted in Figure 1. 

Poly(phenylcarbyne) (1), poly(methylcarbyne) (2), 99:1 poly(phenyl-co-
hydridocarbyne) (8) and poly(phenylsilyne) (9) were synthesized as previously 
reported (7,2,76). ESR spectra were measured at room temperature for each polymer 
on solid samples using a Bruker 200 spectrometer operating at 9.70 GHz with a 
modulation frequency set at 100.0 kHz. Equal amounts of polymer were measured 
for each sample. In order to quantify the number of unpaired spins present within the 
samples, each sample was compared to a Bruker weak pitch standard (77). 

Results and Discussion 

We have examined models of three different polymers, poly(phenylcarbyne) [PhC] n 

(1), poly(methylcarbyne) [MeC] n (2), and the parent polycarbyne [HC]n (5). Two of 
these polymers, 1 and 2, have been experimentally synthesized (7,2); polycarbyne 
[HC]n (5) exists only as a model and was created in order to have a reference for 
comparative purposes. Although the synthesized polymer networks consist of 
randomly assembled fused rings of varying sizes, we chose to adopt more simple, 
ordered models for our M D simulations in order to provide a basis for future 
construction of randomly oriented polymers. The models that were chosen consisted 
of networks of varying numbers of fused, regular, six-membered rings (Figure 1). 
The sizes of the model structures were varied by changing the number of fused 
cyclohexyl rings contained within the backbone of the network. Networks consisting 
of seven and nineteen fused rings were chosen for our simulations in order to provide 
a symmetrical system to study: the networks are constructed so that concentric rings 
are arranged around an innermost ring. Seven and nineteen fused rings represent 
fully concentric structures (Figures la and lb). Model networks containing seven 
fused rings substituted with Ph (3), Me (4), and H (5) (Figure la) were initially 
studied, while larger models which contain nineteen fused rings substituted with Ph 
(6) and H (7) were also constructed (Figure lb). As is illustrated in Figures l a and 
lb, in these network models, 3-7, the substituents of the inner rings of the networks 
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306 COMPUTER-AIDED MOLECULAR DESIGN 

H > H | 

la) 

Mm 
R 

R = Phenyl 
R = Methyl 
R = Hydride 

(3) 
(4) 
(5) 

lb) R = Phenyl 
R = Hydride 

(6) 
(7) 

Figure 1: Schematic representing models that were created for M D simulations. 
The models consist of fused, regular, six-membered rings. Model networks 
containing seven fused rings which are substituted with Ph (3), Me (4), and H 
(5) are shown in Figure la. Figure lb represents larger networks which were 
created that contain Ph (6)and H (7) as network substituents. 
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22. BEST ET AL. Structural Analysis of Carbyne Network Polymers 307 

are arranged in alternating axial and equatorial positions, while the edges of the 
networks are constructed so that each carbon backbone atom is bonded to two other 
carbon backbone atoms, one polymer substituent, and one hydrogen atom. Although 
the models are oligomers and are not as large as the experimentally synthesized 
polymers, whose degree of polymerization is on the order of 300 monomer units 
(7,2), the models should provide insight into the structural arrangements which are 
possible in the actual polymer materials, and can serve as a basis for future modeling 
work. 

Structural features of the oligomeric models 3-7 were analyzed by calculating 
average bond lengths and torsion angles. The averages take into account the 
symmetry found in the inner portion of the networks: all carbon backbone atoms 
which were located in the inner portions of the networks are bonded via carbon-
carbon single bonds to three other carbon backbone atoms and one polymer 
substituent, thus making every carbon backbone atom equivalent. For example, the 
C-C bond distances of the inner cyclohexyl rings in 3-5 were calculated by taking the 
averages of the six individual bond lengths (atoms A-F) which define the ring 
(Figure 2). Other symmetry-related structural features such as torsion angles within 
the polymer backbone were also calculated by taking averages of individual torsion 
angles (for example, in Figure 2 the torsion angles consist of four consecutive carbon 
backbone atoms, e.g. torsion angle made by atoms A-B-C-D). Average C-C bond 
lengths and torsion angles (torsion angles were measured only for the interior 
portions of the networks) for model networks 3-7 which were obtained from these 
calculations are shown in Tables I and II. 

For the larger network models whose backbones contain nineteen fused rings 
(6,7), the calculations indicate that as the size of the polymer backbone substituent 
increases from hydrogen for polycarbyne (7) to the network with the larger phenyl 
substituents (6), the distances between adjacent carbon backbone atoms increase by 
approximately 0.4Â (Table I). Conversely, the torsion angles (Table II) within these 
larger networks are seen to decrease with increasing size of the substituent (smaller 
network models 3-5 also exhibit this trend and are discussed below). The larger 
polycarbyne model 7 has an average torsion angle of 58.6°, which is approximately 
equal to that found in the most stable chair conformation of cyclohexane (18). 
However, the larger poly(phenylcarbyne) model 6 is far more planar and its 
component cyclohexyl rings deviate significantly from the chair conformation. 

The observed increases in bond lengths and decreases in torsion angles within 
the backbone of 6 are due primarily to steric factors. Furthermore, the ESR study as 
well as the geometrical conformations of the polymer model substituents indicate 
there also may be electronic factors which may be influencing the preferred 
conformations of 6 as well. The large phenyl substituents in 6 cause the amount of 
steric strain in the network to increase. Visual inspection of our model network 
reveals that the phenyl rings of 6 are tightly packed due to the constraints on the bond 
distances between carbon backbone atoms (see Figure 3). Because the phenyl 
substituents are in close proximity to one another, repulsive van der Waals 
interactions arise and cause an increase in the amount of steric strain within the 
polymer backbone. The lengthening of the average carbon-carbon bond distances in 
the network backbone is attributed to this steric strain. The smaller networks 3-5 
also give evidence for the steric strain that is present in these network structures. The 
average bond distances for the inner portions of the networks increase with the size 
of their network substituents, 3 > 4 > 5 (Table I). 

An examination of the torsion angles of the smaller model networks 3-5 
reveals the same trend as was seen for the larger model networks 6 and 7. The 
polycarbyne model 5 has an average torsion angle of 58.5° while polymer models 3 
and 4 have average angles of 21.9° and 34.0° respectively. The data indicate that the 
network backbone is becoming increasingly planar as the network substituents 
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22. BEST ET AL. Structural Analysis of Carbyne Network Polymers 309 

Figure 2: Schematic illustrating the determination of average bond lengths and 
torsion angles within the model networks. 

Figure 3: Stereo view of model network 3 illustrating the packing arrangement 
of its phenyl substituents. 

Table Π. Average Torsion Angles for Interior Network Backbone Atoms 
Oligomer Model # of rings Torsion Std. Dev. 

in network Angle (O) 
Poly(phenylcarbyne) (3) 7 21.8 2.2 
Poly(methylcarbyne) (4) 7 34.0 2.7 
Polycarbyne (5) 7 58.5 2.7 
Poly(phenylcarbyne) (6) 19 22.9 1.9 
Polycarbyne (7) 19 58.6 2.2 
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310 COMPUTER-AIDED MOLECULAR DESIGN 

become larger and the steric strain in the network increases. The lower torsion angle 
for 3 again arises from steric interaction between the phenyl substituents. 

The methyl substituents of 4 are much smaller than the phenyl substituents of 
3. As is shown in Tables I and II, the average bond distances between adjacent 
carbon backbone atoms for 4 are less than those calculated for 3. This decrease in 
bond length is attributed to the steric signature of the polymer substituents. Because 
the methyl groups of 4 are much smaller than the phenyl substituents of 3, they do 
not require as large a separation between adjacent substituents to relieve the repulsive 
interactions and minimize the steric strain experienced by the polymer backbone. 
Hence, smaller average bond distances and larger torsion angles for the carbon 
backbone are observed. The same argument holds for the polycarbyne model (5) as 
well. 

The degree of crowding between polymer substituents within the various 
network models can also be assessed by an examination of the outer portion of the 
networks as well. The calculated average bond length between adjacent carbon 
backbone atoms on the edge of the network of 6 is 1.73Â (Table II). This bond 
length is less than what was calculated for the inner fused rings of the network of 6 
(1.96Â), yet still greater than the average bond lengths for both the inner and edge 
backbone distances calculated for 7, the hydrogen-substituted model network 
(1.54Â). The edge carbon atoms of the backbone of 3 and 6 [R2CHPh] have one less 
linkage to the network backbone than do the inner network atoms. There are two 
substituents (a phenyl ring and a hydrogen atom) for the edge carbon backbone atom 
rather than just the one phenyl substituent found in the inner portion of the network. 
The phenyl rings are not as tightly packed along the edges of the network as shown 
through visual inspection of our models (see Figure 3). Because of the orientation of 
the substituents, a decrease in the steric strain at the edges of the networks is 
expected. This is attributed to both the decrease in linkages to the network backbone 
and the presence of the smaller hydrogen atoms. Consequently the steric strain 
introduced by the network substituents at the edges is reduced to some degree, as 
evidenced by the reduction in the C-C bond lengths when compared to the inner 
portion of the network backbone. 

This trend of bond length reduction at the edges of the network backbone also 
exists for the smaller models 3 and 4. This supports our conclusion that the degree of 
crowding associated with the network substituents is proportional to the amount of 
steric strain present within the network and hence contributes to the preferred 
conformations of our models. Increase in steric strain with increasing substituent 
size has also been observed in substituted dodecahedranes, which can be regarded as 
oligomers of the polycarbynes (79). 

The π-stacking adopted by phenyl rings also contributes to the conformations of 
the backbones of network models 3 and 6. The strong attraction or repulsion 
associated with π-systems has been shown to determine the conformational preference 
and binding properties of polyaromatic macrocycles (20-22). The most important 
interactions between such π-systems are quadrupole-quadrupole electrostatic 
interactions (23). For aromatic rings with nonpolar substituents, π-π electronic 
repulsions will dominate if the aromatics are arranged in a stacked or face to face 
geometry. Conversely, if the substituents are arranged in a T-structure (phenyl rings 
arranged so that the edge of one ring is perpendicular to the face of a second ring), 
electronic attraction of the π-σ type will dominate (24). Phenyl rings will therefore 
try to orient themselves in a tilted T-structure in order to achieve the lowest possible 
interaction energy between them (24,25). Moreover, as the distances of separation 
between phenyl rings decrease, the stacked arrangements of the rings become more 
frequent but are still unfavorable due to unfavorable energetics. An examination of 
stacked and perpendicular arrangements of π-systems showed that the perpendicular 
arrangement displays the lower free energy due to the more favorable π-σ interactions 
(26). For our model systems 3 and 6, visual inspection reveals that adjacent phenyl 
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substituents are tightly packed in an orientation intermediate between the stacked and 
T-conformations, presumably resulting in unfavorable van der Waals interactions 
between them. Hence, the arrangement of the phenyl substituents contributes 
significantly to the calculated structural parameters which are indicated by our 
models. 

Our calculations also indicate a difference in the average bond lengths between 
the backbone carbon atoms for the inner portions of networks 3 and 6 (Table I), the 
phenyl substituted network models, which may be indicative of an important 
structural feature of the polycarbyne polymer models. For the inner portion of the 
networks, the average bond distance between the backbone carbons of 3 is 1.79Â, 
while that of 6 is significantly longer, 1.96Â. This difference is attributed to the sizes 
of the backbone networks of the two models. The network backbone of 
poly(phenylcarbyne) (1) is much larger than those of our model networks (7,2). 
Because of the size of 1, the number of carbon backbone atoms located along the 
edge of the polymer is small as compared to those of the inner portion of the 
network. Hence, the inner portion of the polymer will have a greater effect on the 
physical properties of 1 than will the edge of the network. Due to its larger inner 
network, 6 is thought to be a better representation of the actual network backbone 
structure of poly(phenylcarbyne) (1) than is 3. The 1.96Â average distance between 
adjacent carbon atoms in the inner backbone of 6 is not feasible for C-C single 
bonds, but arises from the inability of the potential function used in the M D 
simulation to mimic bond breaking. The long average bond length calculated for 6 
suggests that some degree of bond breaking may occur within the backbone of 
polycarbynes, resulting in the formation of biradicals. Bond cleavage within the 
polymer backbone would allow for maximum separation between adjacent 
substituents and would therefore lower the repulsive van der Waals interactions 
between them. It should therefore relieve steric strain and allow for more favorable 
backbone conformations by alleviating the crowding generated by neighboring 
phenyl substituents. Figure 4 illustrates schematically the bond cleavage which is 
proposed to occur in the backbones of polycarbynes . The bond cleavage produces 
biradicals which may rearrange to create areas of unsaturation within the polymer 
backbones. This process may occur throughout the polymers' backbones, resulting in 
some radical mobility. This bonding model for the backbones of polycarbynes is 
analogous to that proposed for amorphous silicon and germanium solid-state 
structures based on continuous random network models, in which some atoms are 
only three-coordinate and are left with a single electron in a "dangling bond" (27). 

That "steric strain induced" C-C bond cleavage occurs within the backbones of 
polycarbyne network polymers is supported experimentally by the observation of 
unpaired electrons in polycarbynes (2). The experimentally-synthesized polymers 
poly(phenylcarbyne) (1), poly(methylcarbyne) (2), and 99:1 poly(phenyl-co-
hydridocarbyne) (8) exhibit ESR signals characteristic of carbon-centered radicals, 
with g-values of 2.0026, 2.0033 and 2.0029 respectively (Figure 5). The number of 
unpaired spins for these polymers are 1.5 χ 10 1 9 , 3.7 χ 10 1 7 , and 2.8 χ 10 1 8 g I 
monomer units respectively. The ratio of the number of unpaired spins for 
poly(phenylcarbyne) (1) to 99:1 poly(phenyl-co-hydridocarbyne) (8) is 5.4 : 1 while 
that for poly(phenylcarbyne) (1) to poly(methylcarbyne) (2) is 40 : 1. 

Because the polymer backbone is highly rigid, the steric strain in the polymer 
systems results in bond cleavage and in the formation of biradicals. That radical 
formation is driven by relief of steric strain caused by the size of the polycarbynes' 
substituents is also demonstrated experimentally by comparison of the ESR spectra 
of four different experimentally synthesized polymers, poly(phenylcarbyne) (1), 
99:01 poly(phenyl-co-hydridocarbyne) (8), poly(methylcarbyne) (2), and 
poly(phenylsilyne) (9) (Figure 5). The intensities of the ESR absorptions are 
indicative of the amount of unpaired spins present within the sample. As shown in 
Figures 5a-5c, the intensity of the ESR signals of these polycarbynes decrease as the 
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312 COMPUTER-AIDED MOLECULAR DESIGN 

Figure 5: ESR spectra of a) poly(phenylcarbyne) (1), b) poly(phenyl-co-
hydridocarbyne) (8), c) poly(methylcarbyne) (2), and d) poly(phenylsilyne) (9). 
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size of the polymers' substituents decrease. The number of radicals formed within 
the polymer is dependent on the size of the backbones' substituents, which our 
models indicate also induces steric strain within the backbone. According to our 
models, the larger phenyl substituents of 1 should induce a large amount of steric 
strain within the polymer backbone and hence greater radical formation to relive this 
strain. The phenyl rings may then stabilize the radicals through delocalization in the 
phenyl substituent. As the steric size of the substituents on the polycarbyne 
backbones are decreased, from polymers 8 to 2, the intensity of the ESR signal also 
decreases, suggesting, as predicted by our models, that the lesser degree of steric 
strain experienced by these polymers' backbones is the cause of a lower degree of 
bond cleavage in the backbone. No ESR signal is seen for the silicon-based 
congener of 1, poly(phenylsilyne) (9, Figure 5d). The Si-Si bonds which form this 
polymer's backbone are much longer than the C-C single bonds which make up the 
backbone of 1 (2.35Â as compared to 1.54Â) (28). A silicon-based polymer 
backbone substituted with phenyl groups therefore would not experience as much 
crowding as would the identically-substituted carbon-based polymer, and should 
display little or no biradical formation and ESR signal. These results support the 
M D simulations by illustrating the relationship between the size of the polymer 
substituent and the amount of steric strain within the polymer system, as evidenced 
by the number of biradicals formed by bond cleavage. 

The electronic absorption spectra displayed by the polycarbynes (7,2) also 
support our models' prediction of a strained network backbone structure. These 
spectra are nearly identical to those of their silicon analogues, the polysilynes (5-9), 
consisting of intense broad absorptions with onset at approximately 450 nm, 
increasing gradually in intensity with decreasing wavelength to 200 nm. For 
polysilynes, these absorptions are attributed to Si-Si σ-conjugation over the three 
dimensional polymer backbone (5-9). Because of the semiconductor-like electronic 
spectra, the polycarbyne backbones appear to be σ-conjugated. Such σ-conjugation 
of C-C bonds is also seen in small molecules which incorporate strained fused rings 
(29-40). The strain which our calculations indicate is present in the fused rings of 
the polycarbyne backbones should lower the C-C bond strength and thus the energy 
of the bonds' σ-σ* transitions from the vacuum U V (where the σ-σ* transition of 
unstrained C-C bonds occurs (28)) to the observed U V and visible frequencies. The 
radical transfer mechanism shown in Figure 4 could also contribute to the 
polycarbynes' low-energy electronic absorptions: delocalization of biradicals 
through the polycarbynes' backbone as depicted in Figures 4c-4e should also give 
rise to lower-frequency electronic absorptions, as could defects (for example, O H or 
C l terminations) in the polymers' structures. 

Our calculations' indication that strain within polycarbyne network 
backbones, induced by steric crowding of the substituents (see above), increases as 
the network backbone increases in size suggests that the degree of polymerization 
which is seen in polycarbynes should decrease as the size of backbone substituents 
increases. This prediction is also confirmed by the experimental determination of 
the polycarbynes' molecular weights. The number average molecular weights, M n , 
for poly(phenylcarbyne) (1) (7,2), 99:1 poly(phenyl-co-hydridocarbyne) (8) (2), 
poly(methylcarbyne) (2) (2), and poly(phenylsilyne) (9) (16) are 3007, 4168, 4425, 
and 8775 daltons, respectively. These molecular weights demonstrate that, as was 
seen for inorganic-backbone network polymers (5-9), the degree of polymerization 
attained by the polycarbynes is proportional to the steric signature of their 
substituents, suggesting that large substituents can be incorporated only in networks 
which, by virtue of their smaller sizes, can minimize steric repulsions between 
substituents. 
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Conclusions 

MD simulations of models for a new class of carbon-based polymers, polycarbynes, 
were carried out in order to provide some insight into this class of polymers' 
structural characteristics. Results of the simulations suggest that some degree of 
bond cleavage occurs within the polymer backbones that is increased by strain 
induced steric repulsions between the polymers' side chain substituents. The MD 
results are supported experimentally by the polymers' ESR spectra, electronic spectra 
and degrees of polymerization. Future investigations will focus on the simulation 
and molecular dynamics of polycarbyne model systems comprised of larger 
networks of varying degrees of backbone randomness that will better model the 
actual polymers. 
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Chapter 23 

Computer Simulation of Polyelectrolyte 
Adsorption on Mineral Surfaces 

Susan Fitzwater 

Rohm and Haas Company, 727 Norristown Road, 
Spring House, PA 19477 

Simulation of the adsorption of fully neutralized poly-acrylic and 
poly-aspartic acids on various calcite surfaces shows that both acids 
tend to adsorb flat against positive and growth surfaces. Poly-aspartic 
acid adsorbs more slowly than does poly-acrylic acid. There is no 
evidence for "ion bridging" to negative surfaces. 

Polyelectrolytes are used in detergent builder, mineral processing, and water 
treatment applications. Adsorption of the polymer on selected mineral surfaces can 
have a significant effect on performance in all of these applications. Adsorbed 
polyelectrolytes can act as dispersants, providing charge and/or steric repulsion 
between particles. Adsorbed polyelectrolytes can also act as crystal growth 
inhibitors, altering the size and/or habit of crystals which form during the washing 
and other processes. 

Molecular modeling of isolated polyelectrolytes, with and without counterions, 
has given us detailed information about how polyelectrolytes interact with 
counterions and how polyelectrolyte structure affects these interactions (1). From the 
observed characteristics of polyelectrolyte - counterion interactions, we have inferred 
characteristics of polyelectrolyte - mineral surface interactions. We have 
successfully used these inferred characteristics to rationalize and predict 
polyelectrolyte structure effects on applications properties (2, 3). However, our long-
term goal has always been to include explicit mineral surfaces in the modeling. 
Recent hardware and software developments allowed us to investigate how including 
explicit mineral surfaces affects both modeling results and computational 
requirements. 

In the studies described here, I examined the interaction of both poly(acrylic acid), 
pAA, and poly(aspartic acid), pAsp, with various C a C 0 3 (calcite) surfaces. We have 
a wealth of experimental data and modeling experience on both p A A and pAsp. 
C a C 0 3 surfaces are fairly well characterized; also, polyelectrolyte interaction with 
C a C 0 3 surfaces is important in several commercial applications. 

0097-6156/95/0589-0316$12.00/0 
© 1995 American Chemical Society 
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23. FITZWATER Polyelectrolyte Adsorption on Mineral Surfaces 317 

Calculation Methods 

The basic method I used was as follows: 
1) Take an equilibrated model polyelectrolyte, with or without counterions. 
2) Move it close to a model mineral surface. 
3) Energy minimize to give a stable polyelectrolyte (+ counterions) + mineral 

surface complex. 
4) Run molecular dynamics on the complex, allowing the polymer 

(+ counterions) to move into low-energy configurations on the mineral 
surface. 

Some details on each step: 

Model Polyelectrolytes. The model polyelectrolytes I used here are quite similar to 
those I have reported on before. I used 20-mers for both pAA and pAsp: this is 
similar to the size used in many commercial applications. Note that this means that 

COOH 
COOH 

pAA 

the comparisons between pAA and pAsp in this study are done on the basis of 
(nearly) equal numbers of carboxylate groups, not equal molecular weight. [The 
model pAsp used here had 21 carboxylate groups; the extra one is at the C-terminus.] 

The pAsp used in most of the modeling had 35% a- / 65% β-linkages: 
,COOH 

COOH 

H O H 
α β 

[Polyaspartate is generally synthesized by hydrolysis of polysuccinimide. Recent 
work (4) has shown that the α/β ratio is generally 25-30% α-, 70-75% β-, and is 
remarkably insensitive to hydrolysis conditions.] Earlier modeling work had not 
shown a strong effect of the α/β ratio on interaction with counterions. A couple of 
simulations of 100% α pAsp on the C a C 0 3 surfaces showed minor differences from 
35% α / 65% β pAsp on these same surfaces. 

Since these polymers are often used in a neutral or somewhat basic environment 
and have pKa's in the 4-5 range, I assumed that all of the acid groups were 
neutralized, that is, all of the carboxylates are in the COO' form. 
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In many real applications, pAA and pAsp interact with C a + 2 counterion. Most of 
our earlier modeling studies have been done with C a + 2 counterions; it's usually the 
counterion we are most interested in. For studies in which counterion was included, I 
added 7 C a + 2 counterions to both pAA and pAsp. Experimentally, it is observed that 
fully neutralized pAA binds enough N a + or C a + 2 to neutralize -2/3 of its charge 
(5,6); one of my earlier modeling studies of pAA with Na + suggested the same (7). 
Calcium sequestration studies done at Rohm and Haas suggest that both pAsp and 
pAA bind about 1 C a + 2 per 3 carboxylates. 

Electrostatic interactions have strong effects on these systems. I derived charges 
on the atoms in the model polyelectrolytes from semi-empirical quantum calculations 
on oligomers. For the counterions and atoms in the model surfaces, I used 
"reasonable" ionic charges. The atomic charges I used are shown in the table below. 

pAA 

CaCQ 3 

Table I. Atomic Charges for Polymers and Surfaces 
Atom Type Charge Species Atom Type Charge 
methylene C -0.13 pAsp Ν -0.31 
methine C -0.16 H (N-H) +0.26 
carbonyl C +0.33 methine C (a form) +0.05 

all H's +0.055 methine H (a form) +0.11 
carboxylate O's -0.61 methylene C (a form) -0.24 

methylene H (a form) +0.09 
C a + 2 ion +2.00 methine C (β form) -0.06 

carbonate C 0.00 methine Η (β form) +0.08 
carbonate 0 -0.667 methylene C (β form) -0.18 

methylene Η (β form) +0.11 
carboxylate C +0.32 
carboxylate 0 -0.61 

carbonyl C +0.28 
carbonyl Ο -0.40 

Most of the simulations were done using the Dreiding Π force field (8) and the 
P O L Y G R A F program (Molecular Simulations Inc. of Burlington, M A , and 
Cambridge, UK). In these simulations, I approximated the effect of water by using a 
6r dielectric constant. This is similar to the value of 4r which was found to give 
good results in a study of the effect of dielectric constant on molecular modeling of 
the structure of crambin (9). In practice, D = 6r implies that charge-charge 
interactions are mediated by a dielectric constant in the range 25 - 60, the correct 
order of magnitude for water at small charge-charge separations (10). I also used a 9 
A cutoff for both van der Waals and electrostatic interactions. Given that 
electrostatic interactions are long-range, using this relatively small cutoff (or any 
cutoff at all) may seem questionable. However, use of the cutoff can be justified on 
several grounds: 
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1) Our major interest is in simulating qualitative behaviour in real systems, where 
the ionic strength is almost always appreciable. This means that the correct 
electrostatic potential function is 

Eelec = qiq2/De-Kr r (1) , 

where κ is the Debye screening constant, a positive number which increases as 
the ionic strength increases. Thus the effect of ionic strength is to wash out the 
charge-charge interactions, particularly at large separations. Distance cutoffs 
simulate this effect, albeit crudely. 

2) Previous simulations done with D = 6r and cutoffs agreed qualitatively with 
experiment. 

3) A few simulations done with much longer cutoffs (20 A for the electrostatic 
interactions) showed the same qualitative behaviour as those done with the 9 A 
cutoffs. 

I also ran a few simulations using the M M 2 force field (11) in the MacroModel 
program, with the GB/SA (12) solvation model for water. These were limited 
because the GB/SA solvation model requires 1-2 orders of magnitude more computer 
time than the simple D = 6r model. However, structures which were stable minima 
with Dreiding Π / D = 6r tended to be similar to stable minima with M M 2 / GB/SA. 
Also, subjecting the Dreiding Π / D = 6r minima to molecular mechanics with M M 2 / 
GB/SA induced little qualitative change in the structures. Therefore, the results 
presented here do not appear to depend heavily upon the specifics of the potential 
functions or solvation models used. 

Model Mineral Surfaces. I built these using the CERIUS program (Molecular 
Simulations Inc. of Burlington, M A , and Cambridge, UK). There are an infinite 
number of possible surfaces for any given lattice type; I chose surfaces which are 
either present in the macroscopic C a C 0 3 crystallites or are fast-growing, as predicted 
by the Bravais-Friedel-Donnay-Harker method (13) implemented in CERIUS. The 
model surfaces were large, thin slabs, significantly larger than the fully extended 
polyelectrolytes (to avoid edge effects), and 3-4 ion layers thick. 

Here, I'll discuss results from the 0 0 1 and (very similar) 1 0 -2 surfaces, present 
in macroscopic crystallites, and the 2 0 3 surface, a growth surface. Formally, both 
the 0 0 1 and 1 0 -2 surfaces can be either positive or negative, depending on whether 
there is a layer of C a + 2 or C 0 3

2 ions on the face. The 2 0 3 surface is formally 
neutral. 

Obviously, the polyelectrolyte without counterions is expected to adsorb strongly 
on the positive surfaces and not at all on the negative surfaces. The behaviour to be 
expected on neutral surfaces, or when counterions are added, is not so clear. There 
are reports that pAA can adsorb on negative kaolin surfaces by counterion bridging 
(6,14), even though the typical pAA + counterion complex is formally negative. 

For each polyelectrolyte - surface combination, I took the polyelectrolyte (with or 
without counterions) in a low-energy conformation and moved it 2 - 5 A from the 
model surface. 
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Energy Minimize. I ran the energy minimizations and the dynamics with the 
polyelectrolyte and counterion atoms free to move and the surface atoms fixed. 
There is a minor difference between "fixed" atoms in P O L Y G R A F and in 
MacroModel. POLYGRAF "fixed" atoms are truly fixed; they don't move at all. 
MacroModel "fixed" atoms are restrained; these atoms can move, but there is a 
substantial energetic penalty for doing so. There was minor, though visible, atomic 
movement in the surfaces during the MacroModel energy minimizations and 
molecular dynamics simulations. However, the surface atomic movement appeared 
random. 

Generally, exhaustive energy minimization did not change the conformation of 
the polyelectrolyte significantly from the conformation of the polyelectrolyte in the 
original docked structure. This was true even for polyelectrolytes whose 
configuration on or near the surface changed dramatically during the molecular 
dynamics. Clearly, one cannot rely upon energy minimization alone for an adequate 
qualitative picture of polyelectrolyte interaction with surfaces; one must also use a 
molecular dynamics and/or Monte Carlo procedure which allows the polyelectrolyte 
to search for lower-energy configurations. 

Molecular Dynamics. A l l POLYGRAF / D = 6r simulations were run using 
canonical dynamics at 300 °K for at least 1000 picoseconds using a 2 femtosecond 
time step. From previous work, we know that a 20-mer polyelectrolyte + divalent 
counterions equilibrates in less than 1000 ps. However, the polyelectrolyte + 
counterion complexes studied here did not equilibrate on the C a C 0 3 surfaces within 
1000 ps: the qualitative appearances of the complexes were not changing much at the 
end of the simulation, but the potential energy was still decreasing. The longest 
simulations I ran were 4000 ps; it is questionable that even this system was 
equilibrated at the end of the simulation. 

However, gross conformational changes do occur in 1000 ps. Some qualitative 
differences between pAA and ρ Asp were very apparent in the 1000 ps simulations, as 
were differences in the adsorption of the polyelectrolytes with and without 
counterions. 

I ran a few MacroModel / GB/SA Newtonian dynamics simulations; the longest of 
these was -1000 ps. Results of these simulations were not qualitatively visually 
different from the results of the POLYGRAF / D=6r simulations. 

I calculated crude binding energies from the POLYGRAF / D=6r simulations and 
similar simulations done without the model surfaces present. Binding energy is 
defined as 

^bind = ^surface "~ ̂ nosurface (2) 

Here, the E's are average energies from the dynamics simulations. Energies from 
the first several hundred picoseconds of dynamics were not included in the averages. 
In assessing the binding energies, be aware that while large differences are 
meaningful, small differences probably are not: the energies of most of the surface 
simulations had not converged. Also be aware that the electrostatic contribution, 
which strongly dominates the binding energy, is damped by the 6r dielectric constant. 
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Results and Discussion 

Polyelectrolyte on a Positive Surface. Color Plate 8 shows pAA on the positive 0 0 
1 surface before the start of the dynamics simulation. The pAA is somewhat coiled: 
even though this is not the lowest-energy conformation for an isolated pAA chain, 
pAA + counterions is coiled and it's not clear when the counterions leave the 
adsorbing chain, or whether the chain extends before it adsorbs. The Color Plate 8 
conformation is a stable minimum on the 0 0 1 surface. 

Color Plate 9 shows pAA on the positive 0 0 1 surface after 10 ps of dynamics. 
The chain has flattened out on the surface. For the remaining 990 ps of the 
simulation, the chain twitched on the surface but did not undergo any major 
conformational rearrangement. 

Color Plate 10 shows ρ Asp on the positive 0 0 1 surface before the start of the 
dynamics simulation. Again the chain is somewhat coiled. Color Plate 11 shows 
pAsp on the positive 0 0 1 surface after 1000 ps of dynamics. A significant portion 
of the chain has flattened out on the surface, but a good part of the chain is not in 
contact with the surface at all. Some longer simulations suggest that, given more 
time, the pAsp would have flattened out more. 

Binding energies on the positive surfaces are shown below: 

Table II. Binding Energies of pAA and pAsp on Positive Surfaces 
Polymer Surface EhinH Ehnnrieri Εχ/riw EH.R 

pAA 0 0 1 -495.67 -9.31 -39.26 -447.12 
pAsp -352.29 13.41 -38.38 -325.99 -1.33 
pAA 10-2 -704.66 8.82 -18.06 -695.55 
pAsp -562.85 23.06 -25.98 -561.85 1.92 

The energy units are kcal/mole. E B O N D E D , E V D W , E E T E C , and E H . B are the bonded (bond 
+ angle + torsional), van der Waals, electrostatic, and hydrogen bonding 
contributions to the total binding energy. 

The pAA simulation results are in good qualitative agreement with experimental 
data on pAA adsorption on calcite (75). The adsorption is observed to be high 
affinity, which implies a strong interaction between the pAA and the surface. This in 
turn implies that the surface on which the pAA adsorbs is positive; both the p A A and 
the pAsp bind most strongly to the positive surfaces. Most of the pAA segments are 
observed to be in close contact with the CaC0 3 surface. 

Polyelectrolyte + Counterions on a Positive Surface. Color Plate 12 shows pAA + 
7 C a + 2 on the positive 10-2 surface before dynamics. The counterions are largely in 
the polymer coil. Color Plate 13 shows the pAA + counterions on the same surface 
after 1000 ps of dynamics. The pAA has flattened out considerably, and the 
counterions have moved away from the surface; they are now outside the polymer 
coil. 

N O T E : Color plates appear in color section. 
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Color Plate 14 shows ρ Asp + 7Ca + 2 on the positive 1 0 - 2 surface before 
dynamics. The general appearance is similar to Color Plate 12. Color Plate 15 
shows the ρ Asp + counterions on the same surface after 1000 ps of dynamics. The 
chain appears to have separated into two segments with roughly equal length: the 
first is adsorbed flat against the surface, and the second forms a coil several A from 
the surface. Six of the seven counterions are within or close to the coil. 

Binding energies on the positive surfaces are shown below: 

Table III. Binding Energies of pAA and pAsp with Counterions on Positive 
Surfaces 

Polymer Surface Ehind E H .R 
pAA 00 1 -336.73 -36.35 -37.33 -263.05 
pAsp -239.06 13.46 -29.22 -219.56 -3.74 
pAA 10-2 -471.12 -16.92 -24.78 -429.43 
pAsp -298.60 28.62 -4.52 -320.62 -2.08 

Note that these are less negative than those for the polymer without counterion on the 
positive surfaces. However, they are still appreciably negative. 

Results of other simulations suggest that the type of counterion binding to 
polymer observed here is not stable (7). Water tends to remove C a + 2 ions which are 
not held within a chain; the C a + 2 within the Color Plate 15 pAsp coil is too 
concentrated to be stable. Both chains will lose counterions eventually; as this 
occurs, the adsorption will become like that of the polyelectrolyte alone on the 
positive surface, discussed above. 

Adsorption may proceed as follows: A polyelectrolyte chain, with accompanying 
counterions, approaches a positive C a C 0 3 surface. Part of the chain comes in 
contact with the surface; counterions shift into a portion of the chain which is still 
separated from the surface. As more of the chain contacts the surface, the 
counterions become too concentrated; one or more moves away from the chain, to 
lower the overall energy. This frees more of the chain to contact the surface. The 
counterions shift again into that (decreased) portion of the chain which is still 
separated from the surface; with the decreased chain volume, they are too 
concentrated, and another moves away from the chain. In short: adsorption drives 
the chain to lose counterions, loss of counterions drives further adsorption, which in 
turn drives further adsorption, and so on. 

In this adsorption picture, the shift of the counterions away from the surface 
during adsorption and their subsequent release could create short-lived regions of 
high counterion concentration. It is conceivable that particle nucleation could occur 
in these regions, particularly if the polyelectrolyte molecular weight is high. Longer 
chains would be more likely to create larger regions, perhaps longer-lived and with 
higher counterion concentration. These regions may also be active in flocculation. 

Polyelectrolyte + Counterions on a Negative Surface. Both pAA and pAsp + 7 
C a + 2 complexes had stable energy minima near the negative 0 0 1 surface. However, 

N O T E : Color plates appear in color section. 
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when the dynamics was started, neither complex approached the surface. The pAA 
complex rapidly deposited 3 out of the 7 C a + 2 ions on the surface. The chain + 4 
remaining C a + 2 ions remained near the surface for the remainder of the simulation, 
elongating somewhat. The ρ Asp complex changed much less quickly. During 1000 
ps of dynamics, it moved away from the surface slightly (significantly less than the 
pAA complex), possibly leaving 1 C a + 2 at the surface. 

Both the pAA and pAsp complexes moved more quickly on the negative 1 0 - 2 
surface. The pAA deposited 4 out of the 7 C a + 2 ions on the surface. The chain + 
remaining ions remained near the surface for a few hundred ps, the chain elongating 
during this time; then the chain + 3 C a + 2 moved away from the surface. During 1000 
ps of dynamics, the pAsp complex appeared to deposit 3 C a + 2 on the surface and 
move away slightly. A subsequent simulation showed that after -5000 ps, the pAsp 
complex also moves away from this surface. 

These simulations suggest that counterion bridging does not occur between either 
pAA or pAsp and the negative 0 01 and 1 0 -2 calcite surfaces. 

Binding energies on the negative surfaces are shown below: 

Table IV. Binding Energies of pAA and pAsp with Counterions on Negative 
Surfaces 

Polymer Surface EhinH Ehonriftri Εχ/riw 
pAA 0 0 1 -163.87 -49.49 -9.84 -104.53 
pAsp -30.41 12.02 -7.62 -34.70 -0.11 
pAA 10-2 -263.85 -46.05 -1.56 -216.25 
pAsp -161.17 8.12 -6.82 -161.65 -0.82 

Given that visual inspection of the dynamics trajectories showed no real chain 
binding to the surfaces, why are the binding energies negative? Apparently for 7 
C a + 2 per chain, partitioning between the chain and the surface results in a lower 
energy state than all counterions staying on the chain. This is consistent with my 
earlier finding that the first counterions to bind to a polymer chain have more 
negative binding energies than do counterions which bind after several other 
counterions are bound to the chain (7). Apparently a negative E b i n d doesn't 
necessarily indicate binding; it may result from an energetically favorable 
rearrangement of the polymer and counterions. 

Polyelectrolyte, with or without Counterions on a Neutral Surface. Binding of 
both polyelectrolytes, with and without counterions, to the 1 0 4 surface (the neutral 
surface present in macroscopic crystallites) was extremely weak. Binding to the 2 0 
3 growth surface was stronger, though not so strong as binding to the positive 
surfaces. Polyelectrolyte binding to the 2 0 3 surface can have a broad influence on 
C a C 0 3 crystal growth: kinetics, crystal habit, ultimate particle size distribution. 

Binding energies for the polymers with and without counterions on the neutral 
surfaces are shown on the next page: 
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Table V. Binding Energies of pAA and pAsp on Neutral Surfaces 
Polymer Surface Ehinri EH.R 

pAA 104 -109.98 -39.02 -33.26 -37.70 
pAsp -78.88 9.70 -29.36 -58.03 -1.18 

p A A , C a + 2 -150.70 -47.18 -25.55 -77.98 
pAsp, C a + 2 -34.89 13.47 -15.26 -35.33 -2.08 

pAA 2 0 3 -202.51 -27.16 -35.06 -140.29 
pAsp -260.02 14.54 -28.69 -245.77 -0.10 

pAA, C a + 2 -269.06 -46.82 -23.78 -198.47 
pAsp,Ca + 2 -165.58 12.70 -29.92 -146.53 -2.13 

Visual inspection of the simulation results suggests that both pAA and pAsp are 
able to find a positive cleft on the surface and snuggle down into it. After 1000 ps, 
most of the pAA segments are in contact with the surface, though the chain does not 
adsorb as flat as it does on a positive surface. After 1000 ps, less than half of the 
pAsp segments are in contact with the surface: much more of the polymer is in loops 
and tails which project away from the surface. 

The polyelectrolyte + 7 C a + 2 complexes appear to snuggle into the same positive 
cleft as do the polyelectrolytes alone. After 1000 ps of dynamics, the pAA complex 
appears to lose 3 out of the 7 C a + 2 counterions; these remain near the chain but in 
position on the surface to form an additional ion layer. After 1000 ps of dynamics, 
the pAsp shows no signs of losing any counterions. This apparent difference 
between the pAA and pAsp may not be real - it would be interesting to see what 
would happen in longer simulations. 

Examination of the binding energies in the light of the observed behaviour 
suggests the following: counterions lost by pAA are more likely to bind on the 
surface, while counterions lost by pAsp are more likely to be released back into 
solution. However, this inference must be regarded as tentative, since it is not clear 
that the chains were truly equilibrated at the end of the dynamics run. 

Conclusions 

The simulations done here suggest two major conclusions: 
1) Both polyelectrolytes show a strong tendency to adsorb flat against positive 

surfaces and the 2 0 3 growth surface. 
2) The pAA and pAsp show similar conformational changes on adsorption, but 

the pAsp moves into its final conformations on the surface much slower than 
does the pAA. 

The pAsp is slower to assume a flat conformation than the pAA, and slower to move 
away from negative surfaces. 

Flat adsorption is particularly interesting to us for the following reasons. 
Theoretically, the adsorption geometry, flat vs. nonflat, can influence polyelectrolyte 
performance in detergent builder, mineral dispersant, and water treatment 
applications. In all of these applications, a major function of the polyelectrolyte is to 
act as a dispersant. Generally, polymeric dispersants can contribute both electrostatic 
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and steric stabilization. In the pAA - calcite system, the stabilization is probably 
predominantly electrostatic: higher M W pAA's flocculate calcite. To provide 
electrostatic stabilization, the polyelectrolyte provides a charged layer around the 
particle; formally, the layer is located not at the particle surface but at the adsorbed 
polyelectrolyte - solution interface (16). The exact position of this charged layer can 
have a strong effect upon electrostatic repulsion between particles (17). Generally, 
moving the charged layer away from the particle surface increases the electrostatic 
repulsion. This in turn suggests that flat adsorption does not give the best 
dispersancy; dispersancy can be improved if the chain can be inhibited from 
adsorbing flat against the particle surface. Experimentally, we have had good 
success in improving the dispersancy of pAA by introducing a small amount of bulky 
co-monomer into the chain (3). 

If chain adsorption is slow enough, and if there is significant desorption and re-
adsorption of chains, the fact that pAsp is slower than pAA to assume a flat adsorbed 
conformation may mean that it is a better C a C 0 3 dispersant, at least on a per-COO" 
basis. However, dispersancy is usually measured on a per-weight basis in practical 
applications. Whether the per-COO" basis would translate into a per-weight basis is 
unknown. 
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Chapter 24 

Simulating the Behavior of Organic Molecules 
in Zeolites 

C. M . Freeman1, D. W. Lewis2, T. V. Harris3, Α. K. Cheetham4, 
N. J, Henson4, P. A. Cox5, A. M. Gorman1, S. M. Levine1,4, 

J, M. Newsam1,4, E. Hernandez2, and C. R. A. Catlow2 

lBIOSYM Technologies, Inc., 9685 Scranton Road, San Diego, CA 92121 
2Davy Faraday Research Laboratory, The Royal Institution, 

21 Albemarle Street, London W1X 4BS, England 
3Chevron Research and Technology Company, P.O. Box 1627, 

Richmond, CA 94802-0627 
4Materials Department, University of California, 

Santa Barbara, CA 93106 
5Department of Chemistry, University of Portsmouth, Saint Michaels 

Building, White Swan Road, Portsmouth P01 2DT, England 

The interactions between microporous materials and organic molecules 
are critical in many industrial processes. Molecular modeling is widely 
employed in understanding these interactions and in making predictions 
for systems yet to be explored experimentally. Computational 
techniques suitable for the analysis of zeolite-sorbate interactions are 
summarized and recent studies described. Applications highlighting the 
impact of molecular modeling in rationalizing zeolite templating, shape 
selectivity and transport properties are provided. 

The application of molecular modeling techniques to the study of hydrocarbons in 
zeolites has grown substantially in recent years. The stimulus for this growth stems 
from many sources: the evolution of appropriate simulation techniques, the 
demonstration of successful predictions, and the importance of industrial zeolite 
applications have all been important incentives. Additionally, zeolites, unlike many 
other heterogeneous catalysts, are often well characterized structurally because of their 
high crystallinity. Reasonable validation of simulated model systems is, therefore, 
possible. Furthermore, through careful control of the conditions of synthesis and 
subsequent chemical modification it is possible to exert considerable influence over 
the properties of a zeolitic system. Modeling provides the ability to rationalize 
empirical observations and predict the effect of known and proposed modifications. 

Background 

The industrial applications of zeolites provide the strongest impetus in their study. 
Catalysts figure in the production of trillions of dollars worth of fuels and chemicals 
worldwide each year and zeolites represent a large and growing proportion of these 
catalytic materials. Although they are ubiquitous, and critically effect gross national 
products, catalyst-based industrial chemical processes are usually sophisticated, but 

0097-6156/95/0589-0326$12.00/0 
© 1995 American Chemical Society 
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practical compromises. Complex and contrasting factors, ranging from 
thermodynamics to economics, must be balanced and harnessed to yield a successful 
commercial activity. Flexibility, coupled with fine control are desired of all the 
components of such a system, including at its core the catalyst or separating agent. The 
diverse demands on the system over its lifetime typically require that much effort be 
dedicated to optimizing the performance of commercial catalysts and sorbents. 
Specific requirements are varied and sometimes seemingly contradictory. A class of 
material which can satisfy such demands, therefore, must possess unusual properties. 
Zeolites, although crystalline, often possess very high effective surface areas because 
of their microporous structures. Zeolites are solid, though they can display high Lewis 
or Br0nsted acidity, and furthermore, their acidity can be controlled. Zeolites maintain 
their structures at elevated temperatures, yet they can flex to admit and accommodate 
large molecules. The contrasting properties of zeolites make them match many 
industrial processes. 

Although zeolites do possess special properties they also present particular 
problems. Single crystals may elude production; indeed, synthesis even of powders 
may be difficult and desirable properties may require extensive post-synthesis 
modification. Molecular modeling methods can provide insight into the varied nature 
of zeolite chemistry and thereby assist in the solution of these problems. The role of 
molecular modeling techniques in structure determination and the rationalization of 
structure and stability has been reviewed extensively elsewhere. In this chapter we 
examine the modeling of zeolite hydrocarbon interactions. This is a key area of zeolite 
chemistry as it is these host-guest interactions which govern the majority of 
commercial zeolite applications. Modeling can be applied in the selection of suitable 
template molecules for synthesis, the rationalization of observed binding affinities and 
the analysis of dynamical behavior. Applications in these areas have expanded greatly 
in the last ten years with reported studies sampling the extensive range of 
computational chemistry's simulation techniques. Here, we summarize the 
methodology of such simulations and overview some of their recent applications to 
problems in zeolite chemistry. 

Zeolite Structural Chemistry. Zeolites are crystalline microporous materials; zeolite 
pores typically have dimensions from 3 to 13 Â and imbue the resulting structures with 
unique properties. Zeolite crystal chemistry has been described in detail elsewhere (1). 
Here we simply note the basic unit of their construction, the T 0 4 tetrahedron, where Τ 
may be a range of atom types, and the fact that by linking TO4 tetrahedra through 
bridging oxygen atoms a diverse family of cage-like structures can be formed. Figure 1 
summarizes some of the key structural characteristics of zeolitic materials. Over 90 
topologically distinct zeolite frameworks, each characterized by a unique three letter 
IUPAC code, are presendy known. 

Although zeolites are crystalline, it may be difficult to obtain crystals of sufficient 
size, L~50μm, for their efficient structural analysis by conventional single crystal 
diffraction. Instead it is often necessary to make use of a range of experimental 
methodologies, including powder diffraction, to elucidate structures. Molecular 
modeling techniques play a significant role in the construction of atomic descriptions 
compatible with all available experimental evidence (2-8). Furthermore once a detailed 
description of atomic structure has been achieved, a diverse range of information can 
be derived using computer simulation techniques. 

Synthesis. Synthesis of microporous materials usually involves crystallization from a 
pre-formed gel under hydrothermal conditions. The gels used are multicomponent 
systems containing, in zeolite synthesis, various aluminosilicate species. Organic bases 
are often used during the synthesis of microporous materials, a particular motivation 
being their apparent templating effect (9), as we shall see, this is an area where 
modeling is having a significant impact. However, the complex and varied conditions 
of such syntheses have given rise to several theories as to the role of such organic 
cations or molecules in the crystallization process (10). 
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Zeolite Applications. Zeolites are exploited broadly in industry. Zeolite ion exchange 
properties allow application as water softening additives for washing powder, and in 
the treatment of contaminated water. Zeolitic sorbents are used in several industrially 
important processes, such as hydrocarbon and air separations. The most important 
industrial area of catalytic application is in fluid catalytic cracking (FCC) (77, 72) 
whereby crude oil is broken down to lower molecular weight fragments used in 
gasoline or as feedstock for the petrochemical industry. Here an acidic form of Y 
zeolite which has same framework structure as the mineral faujasite is employed as the 
primary acidic catalyst. Zeolites are also widely exploited for their shape selectivity. 
Reactants, products and intermediates are stericaUy constrained by a particular zeolite's 
pore system leading to many specific and shape selective catalyst applications. 

Simulation Methodologies 

Molecular simulation techniques are extensively reviewed elsewhere in this volume. In 
this section we provide illustrations of certain of these general procedures applied 
specifically to zeolite problems. 

Potential Energy Functions for Zeolite Systems. Computational simulation 
techniques have at their core expressions for the potential energy of the molecular 
system as a function of its configuration. In general the potential energy, Epotential, of 
the system can be represented as a sum of terms corresponding to many-body terms of 
increasing complexity: 

The first term on the right hand side of equation 1 describes the Coulombic energy; for 
periodic systems this conditionally convergent sum may be evaluated using the Ewald 
technique, though there are subtleties for non-centrosymmetric space group 
symmetries (13). Subsequent terms are sums over all pairs, triads and higher ordered 
arrangements of particles. A generalized expression such as equation 1 provides a 
convenient form for the evaluation of the potential energy of the zeolitic system. In 
most practical applications, however, the sums over interacting particles wil l extend 
only as far as 'four body' terms, and even here the summation is always carried out 
only over a selected subset of atoms determined by the chemical connectivity of the 
system. The chemical interpretation of such 'four body' terms might then be as means 
of describing torsional potentials in hydrocarbon molecules, for example, rather than a 
more abstract, but generally applied, four body interaction potential. Equation 1, and 
the assumptions made to approximate it, provide a useful point of analysis for a given 
potential model. For example, in non-polar systems the long range Coulombic 
contribution may be small in comparison with the short range component of 
interaction energies and it may be practical to ignore this term. In the simulation of 
zeolite frameworks without hydrocarbon sorbates it may be possible to truncate 
equation 1 simply at the two body term (see, for example, 14,75). 

The simulation of zeolite frameworks and zeolite frameworks containing extra-
framework ions has received considerable attention and many different potential 
models have been described for such systems(7J-77). The simulation of organic 
molecules using empirical energy functions, such as equation 1 above, has developed 
into a standard technique for probing the structure and energetics of organic systems 
generally known as 'Molecular Mechanics'(7 8). However, the incorporation of 

Epotential = i : + Σ ^jfoj) +Σ OykOïjk) 

(1) 
ijkl 
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hydrocarbon molecules into models designed to describe zeolite frameworks is not 
without difficulty. Electrostatic interactions in particular may require special treatment. 
Molecular mechanics typically ignores electrostatic interactions between bonded 
atoms, with the Coulombic term essentially used to describe intermolecular rather than 
the intramolecular interactions. However, many zeolite energy functions are based on a 
highly ionic description, where the nearest neighbor bonding is represented as largely 
electrostatic in nature, and consequently atomic charges are set to formal values. Such 
a potential may exert an extreme influence over a polar hydrocarbon sorbate 
necessitating either a special treatment of host-guest interactions or a more fully 
integrated approach to potential development. A range of potential functions suitable 
for simulating zeolite systems have been reported (14-20). 

Static Simulation. Minimization of the potential energy computed by a suitable 
energy function with respect to appropriately chosen variables provides a means of 
optimizing zeolite structural models. Such procedures, which yield energy minimum 
or low temperature structures, have been successfully applied to zeolite framework 
structures, extra-framework cation positions, and modeling sorbate locations. Energy 
minimizations, based on efficient numerical procedures (21-23), provide information 
on low energy sorption sites rather than probing the thermodynamic ensemble of states 
accessed under thermal conditions. However, minimization can probe favorable 
binding locations for guest molecules in systems whose size complicates more detailed 
calculations. The quality of all computational simulations is determined by the quality 
of the potential energy function employed. Energy minimization relies on an accurate 
representation of minima and therefore places lower demands on the accuracy and 
shape of the potential than vibrational, dynamical or Monte Carlo calculations, all of 
which also require information on the curvature about minima and even details of the 
energy surface distant from minima. 

Vibrational Studies. At a minimum of the chosen potential energy function (equation 
1), with respect to suitably chosen coordinates, the second derivative of the potential 
provides information about the cumulative vibrations of the system. Diagonalizing the 
mass weighted second derivative matrix yields the deformation coordinates of the 
zeolite system about the minimum studied. Such simulated data relates directly to the 
optical spectroscopic modes sampled by IR or Raman spectroscopy (see reference 
(24), for example) and can also form the basis of a means for determining the free 
energy of the system (25). Molecular dynamics calculations, described below, sample 
the vibrational degrees of freedom of the zeolite system, by virtue of their intrinsic 
inclusion of thermal variations, and can also yield vibrational information. 

Molecular Dynamics. The first derivative of the energy function yields the forces 
experienced by the system components. This, combined with appropriate mass 
information provides acceleration, which, from a suitable starting point, allows the 
dynamics of the system to be calculated. Finite time steps are employed in integrating 
the equations of motion and a wide range of observable characteristics, from diffusion 
coefficients to sorption enthalpies, can be extracted from the simulations (26). 
However, there are practical limits to the lengths of time which can be modeled using 
molecular dynamics calculations. This upper limit currently extends to the nanosecond 
domain. Such a simulation will entail of the order of 106 energy and derivative 
calculations and represent a considerable computational investment. Large sorbates 
can, however, diffuse more slowly than can be accessed by even such lengthy 
calculations. 

Monte Carlo. Since equation 1 and its analogs provide the potential energy of the 
zeolite system for a given configuration we can use computational statistical 
mechanics to obtain thermodynamic information for a particular system. In practice 
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the necessary configurational integrals are performed numerically using the Metropolis 
(27) importance sampling scheme. Such procedures have been extensively employed 
in the simulation of zeolite-sorbate interactions (28-33). Monte Carlo procedures 
within the Grand Canonical ensemble also provide a means of estimating the loading 
favored by zeolites interacting with potential sorbates at a particular temperature and 
pressure. Here rather than simply displacing sorbate particles, as in the standard 
Metropolis scheme, particle insertions and deletions are also made so that the number 
of sorbate molecules can evolve to equilibrium values for the specified sorbate 
chemical potential or partial pressure. 

Hybrid Studies. The complexity of many zeolite systems prevents direct application 
of traditional modeling methods: Potential sorbates may be flexible, too large to 
diffuse within simulation periods, and local minima may hamper the routine 
application of minimization procedures. These problems can sometimes be 
circumvented by applying the methodologies described above in consort. Thus 
molecular dynamics may be employed to search hydrocarbon conformational 
flexibility, Monte Carlo methods used to place sorbate configurations within the host 
lattice, and finally energy niinimization applied to locate low energy binding sites (34). 
Similarly Monte Carlo searching techniques have been employed as an adjunct to 
constrained energy minimization in probing low energy diffusion pathways in zeolite 
channels (35). 

Applications 

The use of these various methodologies in simulating zeolite hydrocarbon interactions 
is growing rapidly. In this section we provide illustrations of recent topical 
applications. Zeolite synthesis, the first step along the path to an industrial process, has 
for decades been principally an empirical art but molecular modeling is beginning to 
contribute to our understanding of the mechanics of the formation of different zeolite 
structures. Many zeolite systems exert pronounced shape selectivity on the reactions 
which they mediate, a direct result of the steric constraints of their open porous 
structures. Molecular modeling is proving valuable in rationalizing and predicting not 
only shape selectivity but also subtle variations on this classical theme such as 'inverse 
shape selectivity'. Modeling is a valuable adjunct to experimental investigation in 
probing hydrocarbon location and mobility within zeolite systems, and we highlight 
recent molecular dynamics results in this area. We also provide recent examples of the 
modeling of densely packed systems and the modeling of the thermodynamic 
properties of hydrocarbon-zeolite systems through Monte Carlo procedures. 

Different hydrocarbons interact with their zeolite hosts in different ways and a full 
range of simulation techniques are, therefore, regularly deployed in probing these 
interactions. If the interaction between host and guest is weak, and the guest molecule 
is small, diffusion will be rapid and molecular dynamics techniques can yield valuable 
information. Alternatively, if the hydrocarbon can interact strongly with the pores of 
its zeolite hosts, diffusion may be slow, direct dynamical simulation will , therefore, be 
inappropriate. Instead, constrained energy minimization, vibrational analysis, Monte 
Carlo methods, or for translational diffusion, transition state theory will be preferred. It 
may be that information concerning the transport of hydrocarbons through the zeolite 
lattice is not required of the simulation, sorption energetics and likely binding sites 
being of principal interest, in this case the Monte Carlo based procedures wil l be 
appropriate. In practice, then, each of the simulation techniques outlined in the 
previous section can be exploited in the rationalization of molecule-zeolite 
interactions. 

Subtle changes in either host or hydrocarbon can have dramatic effects on intra-
zeolite processes. For example, trimethylbenzene diffuses around 1 million fold more 
slowly in zeolite ZSM-5 than the pflra-dimethylbenzene molecule (36). The origin of 
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this dramatic difference is readily apparent when the size and shape of both guest 
molecules are compared with the pore dimensions of ZSM-S using interactive 
molecular graphics. Trimethylbenzene is unable to fit within the lattice without 
significant strain, and, furthermore, this strain must be increased in the process of 
diffusion. In contrast the /rara-dimethylbenzene (p-xylene) molecule fits neatly into 
the channel structure of the zeolite and it can be seen that diffusion does not entail 
significant steric overlap. 

Although molecular graphics provides a qualitative rationalization of the observed 
differences in diffusion, a quantitative description would demand a detailed molecular 
dynamics study. As the diffusion rates span six orders of magnitude, we should 
anticipate that the simulations themselves, in order to capture the observed diffusion 
differences, should encompass similarly protracted time periods. At present classical 
dynamical simulations of the methylbenzenes are not practical as simulation runs 
rarely exceed 106 time steps. Hence the differences that can be probed by molecular 
dynamics must be compressed into, at most, the nanosecond time frame. In practice, 
therefore, we cannot rely on molecular dynamics to yield desired dynamical 
information for every system. However, by making assumptions about possible 
diffusion pathways it is possible to use constrained minimization and vibrational 
analysis methods in investigating the transport properties of zeolites (35,37). 

There are procedural challenges, then, to be overcome in the simulation of some 
zeolite-hydrocarbon systems. However, in practice, useful information can usually be 
obtained for even the most taxing systems. Recent studies have shown how molecular 
modeling can play an important role in understanding the process of zeolite formation. 

Templates in Zeolite Synthesis 

The syntheses of many novel zeolites rely on the use of organic additives. These 
•template' molecules are occluded inside the zeolite as it crystallizes and can then be 
removed via calcination. Experimental determination of the locations adopted by these 
molecules inside the zeolite is difficult; X-ray diffraction studies, for example, are 
hindered by the polycrystalline nature of most zeolite samples. As a result, only a 
limited number of experimental investigations have been performed. However, as we 
shall see, the agreement between available experimental structures and predicted 
structures is excellent. 

We are still some way from understanding the mechanism of framework 
formation during hydrothermal synthesis under the influence of structure directing 
templates. Indeed the mechanism of framework crystallization in the absence of 
organic additives remains itself uncertain. This section will highlight the role which 
computer modeling techniques can play in advancing our understanding of templating 
in the synthesis of novel microporous materials. The recognition of 'goodness of fit' 
between template and its framework is well established (10) and has parallels in the 
Fischer's famous 'lock and key' analogy for enzyme-substrate specificity. 
Quantification of the underlying determinants of this relationship has recently been 
reported (38-40). 

In these studies trends in template-host interaction are analysed in terms of non-
bonded interaction energies and the shape (as revealed by moments of inertia (39)) of 
template molecules. In assessing the energy of interaction between template and 
framework it proves necessary to account for the flexibility of the organic molecule. 
This has been achieved by making use of a hybrid simulation procedure (34) where a 
library of conformations is generated for the potential template using molecular 
dynamics procedures and representative configurations are then docked into the 
framework using a Monte Carlo procedure. Finally energy minimization is applied to 
yield a range of feasible low energy configurations for the template within the lattice. 

Figure 2 illustrates the relationship between computed template-framework 
interaction energy and the number of non-hydrogen atoms of the template molecule. 
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The apparent trend implies that all atoms within the template contribute approximately 
equally to the interaction energy and hence occupy similar positions in relation to the 
framework. This is not an unreasonable view of the tight binding between template 
and its framework and, indeed, the trend might be used predictively in the selection of 
templates for synthesis of a particular material. The trend is most marked within a 
class of template molecule such as diamines (Lewis, D . W.; Freeman, C. M . ; Catlow, 
C. R. A . 1994 submitted for publication). As is inevitably the case with molecular 
mechanics calculations the absolute template-zeolite interaction energies of these 
studies are dependent on the parameterization of the energy function (equation 1). 
However, it encouraging to note that similar trends are observed using different 
parameterizations. The general observation that favorable host-guest interactions are 
optimized for 'good' templates is, therefore, reasonable and provides quantitative 
evidence that templating is, in some way, the result of a 'good fit' between host and 
template. The measured vibrational characteristics of tetramethylammonium cations 
occluded within aluminosilicates provide experimental evidence of substantial 
template-framework interactions (41,42). 

The formation of a zeolite in the presence of templating molecules is, in practice, 
a kinetically controlled process. Indeed, Bell and Chang have presented a model of 
zeolite formation as an event which proceeds from clathrate organization (43). Harris 
and Zones have demonstrated a striking relationship between host-guest interaction 
energy and crystallization rates for the zeolite-like cage structure nonasil and the 
zeolite chabazite and a range of organic template molecules (38). Figure 3 illustrates 
the relation between the calculated template nonasil-interaction and the length of time 
taken to yield the crystalline product for several templates. The relationship can be 
used predictively; poor stabilization energy for a particular template leads to long 
crystallization times. Clearly favorable template-nonasil interactions are associated 
with higher rates of crystallization. Since crystal growth is significantly faster than 
nucleation for the nonasil system the influence of the template is probably most 
significant at the nucleation stage. We can speculate that the template is able to 
stabilize the cluster configuration(s) leading to viable nuclei which in turn hastens 
crystallization. If this is indeed the critical role of the organic templates, the trend in 
Figure 3 implies that the nucleating center resembles the cage of the nonasil 
framework; as it is the crystallized framework structure of nonasil which is used to 
evaluate the framework-template interaction, rather than a hypothetical model of the 
clathrate structure. It is important to emphasize the fact that entropie terms have to date 
been neglected in studies of template-host interactions. Recent combined theoretical 
and experimental investigations of the nonasil system have illustrated circumstances 
where this approximation may not be valid. We note that the incorporation of entropie 
terms into zeolite host-guest molecule system simulations is possible through either 
vibrational calculations or Monte Carlo methods, though computationally highly 
demanding. 

Recent studies have focussed on probing the interactions of template molecules 
with the frameworks in which they induce crystallization. In the absence of models 
that incorporate the effects of gel chemistry and composition this is a reasonable initial 
approximation. The availability of crystal structure data for zeolite frameworks 
containing occluded template molecules allows us to test the structural accuracy of the 
simulation procedures. For example, Figure 4 illustrates the experimentally observed 
locations of two templates, 1 -aminoadamantane and the N-methylquinuclidinium 
cation, in the L E V framework (44) and the corresponding locations detennined using 
Monte Carlo docking. Clearly there is excellent agreement between experiment and 
calculation. 

The configuration of templates within the crystallized zeolite lattice and hence, 
presumably, their structure-directing role may also be altered by template-template 
interactions. Thus although, the tetrabutylammonium cation in isolation enjoys 
favorable interactions with the ZSM-5 framework, the butyl chains are large enough to 
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Figure 1. Some elements of zeolite structural chemistry (not drawn to scale). 
T 0 4 tetrahedra (a) linked through shared oxygen atoms φ) to form cages, 
chains and sheets. Illustrated here the sodalite cage (c) and showing 
framework cation positions only, (d). Also shown are the framework 
structures of sodalite (e), zeolite A (/), and faujasite (g). 

2 Non-Hydrogen Atoms ^ 

Figure 2. Computed interaction energy (kcal mol - 1 ) for experimental 
framework-template combinations as a function of the number of non-
hydrogen template atoms. 

70 Hours 190 

Figure 3. Comparison of computed stabilization energies (kcal mol - 1) with 
nonasil crystallization times for a range of template molecules. 
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hinder one another once the complete zeolite framework is established and it is 
tetrapropylammonium cation which is the preferred template in ZSM-5 synthesis (40). 
Apparently two complementary criteria need therefore to be satisfied for an organic 
molecule to template successfully a zeolite. First, the favorable non-bonded interaction 
between template and framework must be optimized. Second, the template molecules 
must be able to pack efficiently within the zeolite framework. Additional constraints 
are certainly imposed by the mechanics and kinetics of crystal growth. 

The Monte Carlo docking procedure has been extended to account for the effects 
of template interactions within the zeolite lattice (Cox, P. Α.; Stevens, A . P.; Freeman, 
C. M . ; Gorman, A . M . In preparation). The Monte Carlo stage of the calculation 
selects at random a location and orientation for the guest molecule within the confines 
of the host structure. As for the isolated guest molecule case, this configuration is 
retained only if its interaction energy falls below a specified threshold level. Further 
molecules are automatically packed into the cell subject to appropriate periodic 
boundary conditions. Simulated annealing (45), in the form of high temperature and 
quenched molecular dynamics, is then applied to obtain low energy packed 
configurations. The procedure is summarized schematically in the series of diagrams 
of Figure 5 illustrating the use of the procedure in generating a packed model for p-
xylene molecules in ZSM-5. Trial applications of this new procedure to model 
systems, such as N-methylquinuclidinium in the L E V framework, have yielded 
excellent agreement with experiment. 

Shape Selectivity and Inverse Shape Selectivity 

The important industrial role of zeolites provides a strong incentive for the calculation 
of catalytic reactivities and selectivities, as a means of both rationalizing experimental 
results and focussing experimental effort. For many catalytic systems in the 
petrochemical and refining industries an interplay of complex factors govern 
selectivity. Simulation is often highly informative, especially when one factor, such as 
rate of diffusion or preferred binding, dominates. 

Such a situation arises in the industrial exploitation of shape selectivity (46) where 
the steric constraints of the zeolite can exert a direct influence over the reactions 
catalysed within its framework. As in pharmaceutical modeling, molecular graphics 
and molecular modeling techniques are an effective tool for studying the shape 
selectivity imposed by a particular zeolite structure (47-56). However, the influence 
exhibited by the host lattice can be subtle. For example 'inverse shape selectivity' (57) 
is manifested for C*-C7 paraffinic hydrocarbons by molecular sieves containing void 
spaces of around 7 A in diameter (58). Here molecules whose size and shape match the 
void space are preferentially sorbed over smaller or isomerically related molecules. 
Hence the shape selectivity is attractive in its action as opposed to the normal, 
repulsive or excluding selectivity. 

Inverse shape selectivity has been observed in materials of the AFI structure type 
in a 'pore probe' test (59) in which 2,2-dimethylbutane (DMB) is selectively absorbed 
from a 1:1:1 mixture of D M B , 3-methyl-pentane (3MP) and n-hexane at 130C. In 
hexadecane hydrocracking experiments using Pd-zeolite catalysts (58), the acid forms 
of Al-SSZ-24, MAPO-5 and SAPO-5 also showed increased D M B production in the 
hydrocracked Q products compared to 3MP and n-hexane. These two separate lines of 
experimental evidence establish a strong link between the inverse shape selectivity 
observed in sorption and catalytic experiments (Figure 6). 

Since the Q -C7 fraction of 'light naphtha1 from hydrocracking is blended directly 
into the gasoline pool without reforming, high octane is a highly desirable 
characteristic. One method of increasing the octane rating is to increase the fraction of 
D M B and multiply-branched C7 isomers produced by the hydrocracking catalyst. The 
realization of zeolite based catalyst systems capable of giving increased D M B yield 
would, therefore, be of significant interest. 
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One means of determining DMB:nC6 and 3MP:nC6 ratios sorbed in zeolite pores 
requires the calculation of low occupancy sorption heats. These can be obtained using 
Metropolis Monte Carlo methods (60). Experimentally the sorbed ratios of DMBrnCô 
and 3MP:nC6 are measured; these may be estimated from the calculated sorption 
energy differences by the following relation: 

ΔΕ = -RT InKeq = -RT In ( [ Α ^ Ι / Ρ ^ ] ) (2) 

where [AzeoMBzeo] * s m e r a t i ° °f the concentrations of hydrocarbons A and Β sorbed 
within the zeolite pores. The expression is approximate as the calculated energy 
difference is not a free energy, and terms related to pressure and entropie differences 
are assumed to be equal for both A and B. Calculated and observed ratios are 
presented in Figure 6. It can be seen that the agreement is good; providing 
confirmation of the validity of the simplifying assumptions employed. 

Figure 6 also highlights the variation of the calculated and experimentally 
observed DMB:nC6 ratio as a function of void space size for a range of molecular 
sieve structures. This figure shows the effect of inverse shape selectivity for structures 
with void spaces of about 7 À which results from the preferential D M B sorption. This 
modeling study demonstrates that it is, in principle, now possible to examine the 
potential inverse shape selectivity of a given zeolite in advance of experimental 
investigation. Indeed, it is possible to screen hypothetical frameworks (61,62) for 
desirable properties using simulation procedures prior to their synthesis. The 
companion successes in the zeolite templating area suggest the possibility of 
attempting a directed synthesis of a desirable target framework structure using a 
template selected or designed by modeling. 

Diffusion 

In view of the considerable interest in the diffusivity of organic molecules in zeolites 
there has been much activity in the dynamical simulation of such systems (63-71). 
Molecular dynamics studies can be informative. For example, in the recent study of 
Yashonath and Santikary (72) two distinct, modes of xenon diffusion, one surface 
mediated and the other accessing pore central regions, were highlighted in sodium 
zeolite Y . A n additional example is provided by die recent work of Kawano and 
coworkers in the calculation of diffusion coefficients of methane in a silicalite (68) 
and, for a range of larger hydrocarbons, by Hernandez (Hernandez, E . PhD Thesis, 
University of London, 1993) (see also table I). The calculated diffusion coefficients 
obtained appear to accord well with experimetal data. 

Table I. Calculated Diffusion Coefficients of Silicalite Adsorbates at 300K and 
Loadings of 1 and 2 Molecules per Unit Cell 

Adorbate D χ 107 c m V 1 D χ 107 c m V 1 

1 molecule/cell 2 molecules/cell 

Ethane 692 620 
Propane 56 68 
n-Butane 7 14 
n-Hexane 14 9 

In the investigation of transport properties molecular dynamics calculations do not 
require a priori mechanistic assumptions. To probe a particular hypothesis the system 
can be allowed simply to evolve for a sufficient length of time rather than be 
laboriously probed for a sequence of alternative hypothetical models. With the 
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Figure 4. Comparison of calculated (dashed line) and experimental (solid 
line) locations for template molecules within the L E V framework. Left 1-
aminoadamantane and right N-methylquinuclidinium cation (only one of 
several equivalent crystallographic configurations is shown). 

Figure 5 Stages in the combined Monte Carlo docking/simulated annealing 
packing of p-xylene in ZSM-5. Sequence starts top left (framework not drawn 
in intermediate steps for clarity). 

DMB:nC6 
Sorption 

Pore Size 

Figure 6. Experimental and calculated DMB:nC6 ratios as a function of pore 
size in À. Sorption experiments labeled x, hydrocracking data Δ, and 
calculated values *. 
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assistance of modern molecular graphics procedures (75), diffusion mechanisms can 
be extracted from the temporal evolution of the system. However, molecular dynamics 
calculations are constrained by two important factors: firstly the potential model must 
provide an accurate description of interatomic interactions at any separation accessed 
in a simulation, and, secondly, the small size of the time steps employed in the 
integration of the equations of motion dictate that large amounts of computer time 
must be expended to simulate comparatively modest amounts of real time. Several 
strategies are evolving to alleviate these problems. For example, sophisticated 
numerical integration schemes permit the use of longer time steps for zeolite systems 
(74) . We note also that transition-state theory Monte Carlo methods have been 
employed to determine the diffusion coefficients of large molecules in zeolite systems 
(75) . Here it is possible to probe transport too slow to be accessible to molecular 
dynamics calculations at the expense of detailed mechanistic information. Several 
workers have removed the structural flexibility of the zeolite from the simulation (69). 
This has the effect of focusing computational effort on the diffusing entity rather than 
the host lattice. However, there is evidence that framework flexibility influences the 
motion of sorbed species (71). 

Future Developments 

The results cited in this chapter illustrate some of the potential of modeling techniques 
in the study of sorbed molecules in microporous solids. We believe, moreover, that 
there is an exciting future in this field in three respects. The first concerns the accuracy 
that wil l be achievable by simulation techniques; the second the detail and complexity 
of the simulated systems; and the third, the growing possibility of simulating reactive 
processes. 

More accurate simulations require the development of improved interatomic 
potentials: Approaches based on a combination of ab initio calculations and empirical 
fitting procedures, which have been used for several years with success in the study of 
molecules of biochemical importance (76-78) are now finding widespread applications 
in materials modeling (19, 79-82). Improved interatomic potentials will contribute to 
the modeling of details and complexity, but of ever greater significance is the growth 
in computer power, especially the increasing availability of massively parallel systems 
which are appropriate for many of the types of simulations described here. In the 
greatest challenge, that is the study of zeolite reactivity, hardware improvements will 
extend the applicability of quantum chemical methods and new developments, such as 
embedded cluster techniques (83, 84), promise to permit increasingly reliable 
calculations on problems of real chemical importance. 
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Chapter 25 

Valence Bond Charge Transfer Theory 
for Predicting Nonlinear Optical Properties 

of Organic Materials 

William A. Goddard ΙΠ, Daqi Lu, Guanhua Chen, and Joe W. Perry 

Division of Chemistry and Chemical Engineering, Materials 
and Molecular Simulation Center, Beckman Institute, 

California Institute of Technology, Pasadena, CA 91125 

A simple theory (VB-CT) is developed for predicting nonlinear optical 
properties of organic materials. Application of this theory to donor-acceptor 
charge-transfer molecules leads to analytic formulae for the absorption frequency, 
hyperpolarizabilities, and bond length alternation. Derivative relationships be
tween hyperpolarizabilities (with respect to bond length alternation) are derived. 
Using a continuum description of the solvent in the VB-CT framework leads to 
the VB-CT-S model which gives results for solvent shifts in good agreement with 
experiment. To predict the saturation behavior of polarizability and hyperpo-
larizability with respect to polymer length, we developed the VB-CTE model 
which is applied to nine polymeric materials. 

There is a great deal of industrial interest in nonlinear optical (NLO) 
materials for use in 

(Ï) optical processing of data/images, 
(ii) optical storage of data/images, 

(iii) optically based telecommunications, and 
(ivj optically based computers. 

The important properties for these applications are the hvperpolarizabil-
ities. The effect on the energy (E) of applying an external electric field (£) 
is / ·* \ 

Ε = Eo - μ · £ (1) 

where μ depends on £ as in (2) 

μζ(£) = μοζ + OizzSz + βζζζΕ2

ζ + Ίζζζζε\ + δζζζζζεΐ (2) 

The polarizability is defined as 

"-(&)· < 3 ) 

the first hyperpolarizability as 

β (4) 

0097-6156/95/0589-0341$12.00/0 
© 1995 American Chemical Society 
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the second hyperpolarizability as 

^zzzz — 

and the third hyperpolarizability as 

*"·"=\. (W) ' {6) 

where each is evaluated at £ = 0. 
The properties of most current interest are β and 7 which control 

(1) frequency doubling (better focus, more data), 
(ii) changes in refractive index (electro-optical switch for telecommu

nications), and 
(iii) frequency mixing. 

Currently LiNbOz is the material of choice for such applications. However, 
polymers would provide great advantages in ease of processing and for tailoring 
the properties to match precise requirements. 

Recent advances in developing new high 7 organic materials [S. Marder, 
J. Perry, and coworkers (3-5)] include the development of such materials as (4) 

Donor Acceptor 

We report here a simple method, VB-CT, for predicting the NLO properties of 
these materials (6-T). 

A typical approach for predicting polarizabilities involves summing over 
intermediate states formed from molecular orbitals. Thus for a laser frequency 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
02

5

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



25. GODDARD ET AL. Valence Bond Charge Transfer Theory 343 

ω the polarizability and hyperpolarizabilities have the form (8) 

atj(-w,w) = 2I-W>W (^-) V ' Γ 9 η Τ η 9 

\ η ) wng - w 

fiijk(-w<y;w1,w2) =3K(-w<T;w1,w2) (^2^ Ι-^Λα 

V ~ ^ ' J rgnrnmrmg 1 

\ (Wmg - W„)(wn, - W 1 ) f 

(10) 

(11) 

lijki{-u>*\ wi,w2,w3) =4K(-wa; Wi,W2,W3) 

r»' r>3 <p^ ipl 
gp pn nm' mg 

L m n p (Wpg - Wa)(wng - W l - W2){wmg - Wl) (12) 

-Σ' 
r»' <pj r*^ <pl 
' gm' mg' gn' ng 

(wmg - wa)(wng - lui)(lun<7 + w2) 

Here ; 

(i) g indicates the ground state and Σ indicates that g is excluded from the 
sum over excited states.. 

(ii) fl

kl = rl

kl — rgg, where rl

kl is component i for the dipole matrix element 
between states / and k. 

(iii) ωσ = Σί ωχ 
(iv) K(— ωσ\ω\,ω2,ωζ) is a numerical factor determined by the nature of the 

N L O process. 
(ν) Ι _ σ ; 1,2,3 denotes the average of all terms generated by permuting 

σ,ω\',ω2,ωζ. 
Given a good description of the excited states this sum-over-states ap

proach can be used to predict accurate values of a, 7. However there are two 
problems: 

(i) it rapidly becomes very complicated and expensive as system size in
creases 

(ii) there is no obvious relationship between α, /?, 7 or between these proper
ties and other properties (D, A , linker length) of the system. 

V B - C T Theory 
We have developed a new approach (denoted V B - C T ) (6) for predicting 

N L O properties. Valence bond charge transfer (VB-CT) is based on a valence 
bond description, using only the two states, Φ νΒ and Φ ς τ , corresponding to the 
left and right sides of (7) or (8). V B - C T theory determines all N L O properties 
(a, /?,7,£) and establishes relationships between them. It involves two main 
parameters t and V which can be extracted from the experimental A m a i (or 
from theory). It can be used to predict the solvent dependence and should 
be useful for designing new materials by tuning the donor (D), acceptor (A), 
polymer linkers, and solvent. 
N o Solvent. The V B - C T model assumes that the wavefunction of the molecule 
and all properties can be described as a linear combination 

^gr = Λ / 1 - / ^VB + V 7 * c r (13) 
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344 COMPUTER-AIDED MOLECULAR DESIGN 

of the two valence bond configurations, Φy Β and #cr- The optimum charge 
transfer (CT) fraction, / , in (13) is determined by the relative energy of # V B 
and Φοτ, the coupling between them, the change in the dipole moments, and 
the solvent polarity. 

Without solvent the Hamiltonian is 

£ ) · < i 4 ) 

where 

and 

This leads to a bandgap of 

and to a C T fraction of 

(*CT\*VB) = 0, (15) 

-t = {VCTMVVB), (16) 

V = ECT — ΕγΒ- (17) 

Eg = Vv2+4t2 (18) 

1 V _dE1L 

J 2 2y/V*TW dV ' K J 

where Egr is the energy of the ground state. 
Bond Length Alternation. Since #cr and Φy Β involve alternate resonant 
descriptions of the intervening polyene unit, the increase of / from 0 to 1 will 
change each double bond (R = 1.33À) of the polyene to a single bond (R = 
1.45A) and vice versa. Thus the bond length alternation (BLA) coordinate 
changes from q = — 0.12Â = qyB to q = +0.12Â = qç? as the CT fraction / 
goes irom 0 to 1. leading to a one-to-one relationship. The contributions to the 
Hamiltonian (14) are 

EVB = \k{q-q°VB)\ (20) 

EcT = V0 + lk(q-q°CT)2. (21) 

where Vo is referred to as the adiabatic excitation energy. 
The equilibrium structure qopt obtained by solving 

^ = 0 (22) 
dq 

leading to 

Qopt = ^ (q°vB + QCT) + \ (Q°VB ~ QCT) ^ Ν ^ + ^ (2SA) 

= QVB ~ f (QVB ~ QCT) 

= -0.12 + 0.24/ (236) 

Thus / and qopt are linearly related to each other. 
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25. G O D D A R D E T A K Valence Bond Charge Transfer Theory 345 

Figure 1 illustrates the dependence of the B L A on Vb using 

t = l . l eV , (24a) 

a force constant in (20), (21) of 

k = 33.55 eV/k2 = 773.7 kcal/molk2 = 5.38 mdyn/cm, (246) 

from U F F (10), and Vb = 1 eV. This leads to qopt = -0.069Â. If V B and C T 
are degenerate (Vb = 0) then qopt = 0. Further stabilization of C T to Vb = — 1 
eV reverses the B L A to qopt = +0.069Â. 

Appl i ca t ion of an Electr ic F i e ld . For systems such as (7) and (8) , the polar-
izability and hyperpolarizability are dominated by the ζ component (chain axis), 
and we will ignore all other components. Assuming that only Ψ ο τ contributes 
to the dipole moment, we write 

ματ = QeRDA (25) 

where Q (expected to be between 0.5 and 1.0) is the net charge transfer for #cr-
In an applied external electric field, £, the Hamiltonian (14) becomes 

(26) 

Equations (13), (17) and (19) apply also for finite fields but with V replaced by 

V£ = V - μοΤε. (27) 

In particular the change in / due to the applied field is 

df _ df dV£ _ 2^μΟΤ _ Ά2μοτ 
d£ dVe d£ ( V / + 4 < 2 ) 3 / 2 E] 

(28) 

Polar izabi l i t ies . Given the dependence of the ground state energy on the 
external electric field, the dipole moment of the ground state, μ ζ , is obtained 
from 

μ*{ε) = -^=ΐμοΤ (29) 

and the polarizability and hyperpolarizabilities are obtained from (3)-(6), lead
ing to 

Λ , _ „2 4f . 2t μ α τ . , 
a " = -*<nWe

 | f = 0 ~~Ëf~ ( 0 ) 

β ι " -~2~~dV) Ι ε = ° - El ( 3 1 ) 
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5 r 

4 

3 

2 

1 

0 

-1 

-2 

V = 1 eV 
0 

J 
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 

q, the bond length alternation coordinate (A) 

Figure 1. Relation between the energy curves for (i) pure V B and (ii) pure 
C T states for Vo = 1 eV. The ground state and excited state resulting from 
interaction of V B and C T . Egap = hc/Xmax is the observed transition energy. 
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25. GODDARD ET A L . Valence Bond Charge Transfer Theory 347 

μ%τ d?f 4t^*CT[V2-t2} 
Ί"" = - ~ d V Î Ι ε = 0 = Ε~\ ' ( 3 2 ) 

&τ#1 _ 5t^5

CTV[V*-3t2] 
24 dV£ | f _ 0 Ε] 

(33) 

(The following discussions will omit the ζ subscripts.) 
Thus V B - C T leads to analytical equations for all hyperpolarizabilities in 

terms of the atomistic parameters t and V\ This contrasts wit η the usual result 
(10X12). 
Predict ions of μ, α, β, and j F r o m V B - C T Theory. As / increases 
from / = 0 to f = 1, the V B - C T model leads to an alternation in which the 
polyene double bonds for Φ ν Β change to polyene single bonds in Φ ο τ and vice 
versa. Since there is a linear relation (23b) between / and qopt [the change 
in bond length alternation (BLA)] and since / determines the polarizability 
and all hyperpolarizabilities, then a single B L A parameter, qopt, determines the 
polarizability and all hyperpolarizabilies. This has been anticipated by Marder 
et al, (9) who pointed out that B L A is a useful parameter for examining the 
structure-property relationships of NLO materials. They showed that the β and 

X values can De tuned by varying B L A . In addition they carried out finite-field 
M l calculations (9) and showed the relationships of α, β and 7 to qopt. Their 

results provide a good test of V B - C T theory. 
In order to illustrate the relationships, we used (19), (23). and (30W33) 

to calculate / , qopt, α, β, 7, and £ as a function of V , all with trie fixed values 
of t and k from (24). This allowed us to obtain a, /?, 7, and δ as a function of 
/ , Figure 2. The shapes of the polarizability curves are insensitive to the value 
t. Thus the salient factor for polarizability and hyperpolarizability is the bond 
length alternation. 

General observations from these relations are as follows: 
(i) a has a maximum for / = | , 

(ii) β is the derivative of a with respect to / , leading to a maximum in \β\ 
at / = 0.276 and 0.724 and zero at / = f. 

(iii) 7 is the derivative of β with respect to / , leading to the largest magnitude 
(a minimum) at / = | , with secondary maxima (1/4 the magnitude) at 
/ = 0.173 and / = 0.827. Where \β\ is a maximum, 7 = 0. 

(iv) δ is the derivative of 7 with respect to / , leading to maxima in \δ\ at 
/ = 0.357 and / = 0.643 and secondary maxima at / = 0.117 and 
/ = 0.883. Where I7I is a maximum, δ = 0. 
Special cases are: 

(a) When V = 0 (VB and C T states degenerate), we have 

f = \ , qoPt = 0, t = E9/2. (34) 

At this point, α is a maximum, β = 0, |-y| is a maximum, and δ = 0. 
(b) When | V | = |t|, we have 

Ε 
f = 0.276 or 0.724, qopt = ±0.0538Â, t = (35) 

v 5 

Thus I/?I is a maximum and 7 = 0. 
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Figure 2. Predicted properties (α, β,Ύ,δ) as a function of CT fraction, / . 
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25. G O D D A R D E T A L Valence Bond Charge Transfer Theory 3 4 9 

(c) When |V| = y/3\t\, we have 

/ = 0.173 or 0.827, qopt = ±0.0785Â, t = (36) 
v7 

Thus |7| is a maximum and S = 0. 
ComD arison with A M I Calculations. The VB-CT results are compared 
with AMI calculations (9) (dots) in Figure 3. In making these comparisons we 
used Q = 0.69 for c*; 7, and δ but Q = 0.51 for β. The AMI results for Θ and 
7 agree quite well with VB-CT theory. VB-CT has a go to zero as / —> 0 or 1, 
whereas AMI calculations lead to about half the maximum. This is probably 
because the current VB-CT calculations ignore the polarizability for a fixed VË 
or CT structure (it could have been included). 

Solvation Effects. Placing a CT molecule into a polar solvent leads to reorien
tation of both the solvent and solute molecules. This changes the relative energy 
of and #cTj (17), which through (14) changes the optimum fraction, / , 
of CT character in the ground state (13). Assuming that only CT contributes, 
the dipole moment of the ground state becomes 

μ = ίμοτ = fQeUDA = ί<2μΌΑ (37) 

In the VB-CT-S model (7) we assume that electronic states other than 
Φ y Β and #CT have much higher energies and that t (the coupling between 
Φ ν Β and Φατ) is independent of solvent. Thus quantitative evaluation of the 
solvation effects requires only the change in relative energy, (17), due to the 
presence of solvent, and we write 

Vs = V + AVS (38) 

Here V is the energy difference between ΦyΒ and #CT without solvent and AVs 
is the change in the relative energy caused by the addition of solvent. Including 
BLA the final V is obtained from (19) using Vs in place of V. 

To evaluate AVs we approximate (11) the donor and acceptor by two 
spheres of radius rr) and with charges distributed symmetrically as in (39) 

(39) 

The net result is D o n o r A c c e P , o r 

AVs = - ^ - ( l - - ) f Q 2 S F , (40a) 

where 
SF = — + — - -w—, (406) 

2ro 2rA RDA 

depends only on the geometry. 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
02

5

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



350 COMPUTER-AIDED MOLECULAR DESIGN 

(a) 12 
10 
8 
6 
4 
2 
0 

-2 
-4 

0 0.2 0.4 0.6 0.8 1 

; 

• · 

; 

• , , • 

VB-CT • AM1 
1 1 1 I • 1 1 1 1 1 1 I • • 1 I 1 1 1 . . . : 

(b) 400 
300 

3 200 
(/> 
a) 100 ο 

? 0 
Ο 

C -100 
«• -200 

-300 
-400 

; 
1 1 ' : 

Γ 

VB-CT • ΑΜ1 
ι , . . ι . . . ι . . . . . . : 

(C) Ί000 

500 
3 
V) 

<υ 0 
ΙΟ 
CO 

ο -500 

^-1000 

-1500 

-2000 

: 

• . • 
• • χ 
/ \* 

Γ 

Υ» 

• . . . 

VB-CT 
. . . ι . . . ι . . . 

• AMI 
I ι ι ι I ι ι ι , . , : 

(d) 5 

3 

1 

-1 

-3 

-5 

: δ 

' . . . 
VB-CT 

• • • ι • • • ι ι · · • 

0 0.2 0.4 0.6 0.8 1 

Figure 3. Comparison of predicted properties (α, 7, £) with AMI calculations 
(reference 9). 
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The polarizabilities have the form (30)-(33) where ματ is given by (37) 
and V is replaced by Vs, (38). 

Measurements in solution lead to the rotationally averaged values of the 
polarizabilities, 

β ~ μ ' El ( 4 2 ) 

ι _ 4 * y C T ( r » - t » ) y 
7 - g 7 « « - b E 7 W 

Comparison with Experiment. The dots in Figure 4c show the experimental 
values (4) of the second hyperpolarizability 7 for molecule (7) in a variety of 
solvents 

To compare VB-CT-S theory with experiment, we must evaluate six pa
rameters: t, Vb, SF, RDA, Q, and k. Using the Universal Force Field (10) (UFF) 
in conjunction with Charge Equilibration theory (12) to predict the charges, we 
obtain 

RDA = 7.30Â (44) 
for molecule (7). Similarly UFF (10) leads to the value of k in (24b). The 
remaining parameters t, VQ, SF, ana Q are each intrinsic parameters of CT 
molecules and can be determined directly from experiment (4). 

From (35), 7 is zero when |V| = Experimentally (4) 7 = 0 for a 
solvent polarity of e = 2.209, leading to E9 = 2.648 eV for this polarity. Thus 
from |V| = \t\ and (7), we can evaluate t for (7), 

t = Eg/VE = 1.184eV. (45) 

Vb and SF can be obtained by fitting absorption peaks in two different solvents. 
We chose dioxane (ei = 2.209 with absorption energy Egi = 2.648 eV), with 
CH3CN (e2 = 37.5 and Eg2 = 2.604 eV). This leads to two equation of the form 

^0 + \k [(qi - q°CT)2 - (ft - qVB)2] - (l - j ) UQ2SF = VV -4 ' 2 > 
(46) 

where depends on t and Eg. Solving equation (46) leads to 

Q2SF = 0.0373Â" 1 (47) 

V0 = 0.833eV (48) 

To separate out Q from SF, we can fit to the magnitude of 7 at some e. We chose 
to do this for CH3CN (e = 37.5). The experimental value (4) is jstatic = -35 
esu, whereas the calculated value would be 7 = —118 esu for Q = 1. This leads 
to 

Q 4 = 0.297, (49a) 
or 

Q = 0.738, (496) 
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352 COMPUTER-AIDED MOLECULAR DESIGN 

Substituting into (47) leads then to 

SF = 0.0685Â" 1 (50) 

Given t, Vb, SF, Q, R D A , and k from (45), (48), (50), (49), (44), and 
(24b) we can calculate α, β, 7, and S for all solvent polarities, e. The resulting 
averaged values are shown in Figure 4. 

Currently only y is available from experiment, Figure 4c. Despite the 
simplicity of this model, VB-CT-S fits reasonably well with experiment (4). It 
will be valuable to measure the a and β for this molecule in various solvents in 
order to further test the model. 
Use in Design and Prediction. The VB-CT-S model is quite simple. It 
involves 

i. two properties (k and RDA) which can be obtained from the force field 
(spectroscopy or theory) 

ii. three electronic parameters (Vb, t, Q) characteristic of the isolated 
molecule, which can be derived from theory or experiment on the iso
lated molecule or from experiment in solution [as illustrated in above] 

in. one solvent independent parameter, 5F , which must be obtained from an 
experimental value of the α, β, or 7 in a polar solvent. 

Given these six parameters one can predict the properties [ À m a x , α, β, 7, *5, and 
qopt] as a function of solvent polarity. 

In designing new nonlinear materials, one might consider replacement of 
the donor, of the acceptor, or of the linker. The value for Vo should depend 
strongly on the ionization potential (IP) of donor (D) and the electron affinity 
(EA) of acceptor (A). These in turn might be related to the change in redox 
potentials for some solvent. Similarly the differential charge transfer. O, can be 
estimated from IPp and Ε A A- The effect of changing the length 0 1 tne linker 
or of replacing the polyene linker in (7) with other polymers is discussed below. 
Linker Excited States 

The VB-CT model assumes that all other excited states are much higher 
than the VB and CT states. In particular the resonant states involving the 
bridge or linker must be much higher. For octatetraene the absorption maxima 
is about 4 eV indicating that the resonance state of the linker in equation 51 is 
more than 4 eV above tne VB state. 

Since the donor-acceptor molecules considered here have the CT state about 1 
eV above the VB state, neglect of the resonance state should be a good approx
imation. When the energy of the resonance structure is similar to those of VB 
and CT, the contributions from the linker resonance state must be included. 
This complicates the theory so that the results are no longer analytic. 

To predict the dependence of α, β, η on polymer length, we developed 
valence bond charge transfer exciton (VB-CTE) theory (8). Here the excited 
states are considered as charge transfer excitons with an electron removed from 
the HOMO on one monomer and added into the LUMO on another monomer 
ρ sites away. With some additional approximations this leads to an analytic 
result and to saturation behavior in good agreement with experiment. Thus for 
polythiophene (52) we obtain the results in Figure 5. 
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100 

3 

ω 

259 

258 h 

256 

256 

VB-CT-S 

10 20 30 40 50 

Figure 4. The predicted dependent of polarizability on solvent polarity (ex
pressed in terms of the static dielectric constant e). (a) Polarizability, a. (b) 
Hyperpolarizability, β. (c) Second hyperpolarizability, 7. (d) Third hyperpolar
izability, δ ζ ζ ζ ζ ζ . The values plotted are the static averages values. For 7 in (c) 
a comparison is made between theory (solid line) and experiment (dots). 

Continued on next page 
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Figure 5. Comparison of theory and experiment for the saturation behavior of 
oligothiophenes. (&) Polarizability α (ω = 1.95 eV) and (b) hyperpolarizability 

(ω = 1.16 eV). The dashed line connects experimental data (with error bars), 
he solid line connects theoretical predictions. 
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VB-CT-E theory involves just two parameters t and V = IP — Ε A. They 
axe related to bandwidth Β and bandgap Eg by (53) and (54), 

Β = 4* (53) 

Eg = V - 2t (54) 

The saturation length for polarizability is (55), 

£ β ~ 1 + 2 θ £ (55) 

and the saturation length for second hyperpolarizability is (56), 

£ 7 ~ l + 3 8 : £ . (56) 

Thus applying V B : C T - E to other polymers require only two pieces of informa
tion, say a bandwidth and a bandgap. Table I shows the predictions for the 
polymers in Figure 6. 
Table I. Saturated values for a and 7 and saturation lengths ( L a , L 7 ) predicted 
from VB-CT-E theory. These values assume ω = 0. 

Quantity Band Band tb Vb Saturation Ίζζζζ/Ν Quantity 
Width Gapa Length 

Β Eg La 

(10"34esu) Polymer (eV) (eV) (eV) (eV) (10"23esu) (10"34esu) 

6a 3.9 2.1 1.0 4.1 5.8 10.1 2.41 11.3 
6bc 3.5 3.4 0.9 5.1 4.4 7.5 1.13 2.54 
6c 2.8 3.0 0.7 4.4 4.2 7.1 2.49 15.9 
6d 3.8 3.2 0.95 5.1 4.8 8.2 1.13 2.55 
6e 2.5 2.2 0.6 3.4 4.6 7.8 3.88 44.9 
6f 3.3 3.3 0.8 5.0 4.2 7.1 0.40 0.51 
6g 2.7 5.4 0.7 6.8 3.0 4.8 0.083 0.020 
6E 1.3 3.1 0.3 3.8 2.6 4.0 1.09 3.45 
6 j - 2.77 0.83 4.09 5.0 9.0 1.77 6.87 
61 - 1.8 0.83 2.85 6.8 12.0 5.65 82.1 

aFrom theory. 
6 From experiment values of B, Ei 
cTwisted (22°). 

First Principles Prediction of Solvent Effects 

We are using PS-GVB/SOLV {13,14) to predict ab initio solvation effects 
for molecules such as (7) and (8). PS-GVB/SOLV considers that there is a 
dielectric continuum with dielectric constant e surrounding the molecule as in 
Figure 7. Here the interface is the van der Waals surface around each atom. 
The procedure is as follows: 

1. The PS-GVB program (14) is used to calculate the HF or GVB wave-
function and tne optimum orbitals are used to determine the electron 
density. 

2. The density from step 1 is converted to point charges (using electrostatic 
potential derived charges). 
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a Polydiacetylene(Acetyleneic) b Polyparaphenylene 

/ 
m 

c Polyparaphenylene vinylene d Polyprrole 

m 

Θ Polythiophene vinylene 

g Polymethineimine 

f Polyvinylene sulfide 

h Polybenzothiophene 

:οκο 

i Polyacetylene (trans) 

C H ^ C H -

j Polythiophene 

Figure 6. Polymers considered in Table I. 

Figure 7. Illustration for PS-GVB/SOLV calculations. 
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3. DelPhi (from B. Honig of Columbia) calculates the solvent response to 
the charges from step 2, using the Poisson-Boltzmann equation. The net 
result is a set of charges at the interface representing tne effects of the 
polarized solvent. 

4. The interface charges from step 3 are input to PS-GVB which solves for 
a new HF or GVB wavefunction consistent with the solvent polarization. 

5. The results in step 4 are used in step 2 and the process is iterated until 
convergence. 

The net result is a wavefunction and structure self-consistently adjusted to the 
solvent. This should provide the ability to consider entirely new systems. 

Acknowledgements 
We thank Seth Marder of the Beckman Institute for helpful discussions. 

This research was funded by NSF (CHE 91-100289 and ASC 92-17368). The 
facilities of the MSC are also supported by grants from DOE-AICD, Allied-Signal 
Corp., Asahi Chemical, Asahi Glass, Chevron Petroleum Technology, Hughes 
Research Laboratories, BF Goodrich, Vestar, Xerox, and Beckman Institute. 

Some calculations were carried out on the NSF-Pittsburgh supercomputer 
and on the JPL CRAY. 

Literature Cited 
*To whom correspondence should be addressed. 

1. Introduction to Nonlinear Optical Effects in Molecules and Polymers; 
Prasad, P. N.; Williams, D. J., Eds.; Wiley, New York, NY, 1991. 

2. Nonlinear Optical Materials; Kuhn, H.; Robillard, J., Eds.; CRC Press, 
Inc. 1992. 

3. Dagani, R.; C and Ε News; 1994, pp 26. 
4. Marder, S. R.; Perry, J. W.; G. Bourhill; Gorman, C. B.; Tiemann, B. 

G. Science 1992, 261, 186. 
5. Marder, S. R.; et al. Science 1994, 263, 511. 
6. Lu, D.; Chen, G.; Perry, J. W.; Goddard III, W. A. J. Am. Chem. Soc., 

submitted. 
7. Chen. G.; Lu, D.; Goddard III, W. A. J. Chem. Phys., in press. 
8. Lu. D.; Chen, G.; Goddard III, W. A. J. Chem. Phys. 1994, 101, 4920. 
9. Marder, S. R.; Beratan, D. N.; Cheng, L. T. Science 1991, 252, 103; 

Marker, S. R.; Gorman, C. B.; Tiemann, B. G.; Cheng, L. T. J. Am. 
Chem. Soc. 1993, 115, 3006; Marder, S. R.; et al., J. Am. Chem. Soc. 
1993, 115, 2524; Gorman, C. B.; Marder, S. R. Proc. Natl. Acad. Sci. 
1993, 90, 1129. 

10. Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. Α.; Skiff, 
W. M. J. Am. Chem. Soc. 1992, 114, 10024. 

11. Marcus, R. A. J. Chem. Phys. 1956, 24, 996. 
12. Rappé, A. K.; Goddard III, W. A. J. Phys. Chem. 1991, 95, 2260. 
13. Tannor, D. J.; Marten, B.; Murphy, R.; Friesner, R. Α.; Nicholls, Α.; 

Honig, B.; Ringnalda, R.; Goddard III, W. A. J. Am. Chem. Soc., 
submitted. 

14. PS-GVB and PS-GVB/SOLV are from Schrödinger Inc. (Pasadena, Cal
ifornia). 

RECEIVED October 28, 1994 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 1

5,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
02

5

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



Chapter 26 

Theoretical Study of the Nitriding Process 
on Cr(100), Fe(100), and Ni(100) Surfaces 

Hansong Cheng, David B. Reiser, Paul M. Mathias, Kenneth Baumert, 
and Sheldon W. Dean, Jr. 

Air Products and Chemicals, Inc., 7201 Hamilton Boulevard, 
Allentown, PA 18195-1501 

We present a theoretical study of nitriding, an important corrosion 
process in chemical plants. Nitriding at metal surfaces occurs due to 
ammonia chemisorption and subsequent decomposition into nitrogen 
and hydrogen adatoms. The theoretical approach, which combines 
density functional theory and the tight-binding extended Huckel 
method, systematically investigates the nitriding mechanism at 
Cr(100), Fe(100) and Ni(100) surfaces. The present study includes 
evaluation of adsorption geometries, estimation of binding energies, 
and comparison of nitriding properties for different metal surfaces. 
The calculated surface band structures are in qualitative agreement 
with UPS photoelectron spectroscopic measurements. Population 
analysis at each step of the chemisorption/decomposition process 
yields significant insight into the electron transfer mechanism in the 
nitriding process. The theoretical results provide an explanation of the 
experimental observation that Ni is a better nitriding-resisting material 
than Fe metal and the latter is superior to Cr. Overall, the present 
study suggests that theoretical chemistry is a useful tool in the analysis 
of corrosion problems. 

Background 

The prevailing method for the analysis of corrosion problems involves a combination 
of experimentation and phenomenological models. (7) This method is limited because 
the results cannot be used to predict new corrosion-resistant materials, or to analyze 
new corrosion phenomena. The rapid advances in computer power and widely 
available software have accelerated the application of computational chemistry to 
chemical fields covering physical chemistry, organic chemistry and inorganic 
chemistry. However the application of computational chemistry to corrosion has been 
slow mainly due to the complicated nature of corrosion processes.(2) This study is an 
attempt to evaluate computational chemistry as a general tool for use in materials 

0097-6156/95A)589-0359$12.00/0 
© 1995 American Chemical Society 
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360 COMPUTER-AIDED MOLECULAR DESIGN 

engineering. We have chosen the nitriding problem for study since it is a well known 
but litde understood problem. 

If all the parameters of an alloy and of the interface between that alloy and its 
environment are known, computational chemistry could, in principle, provide 
activation energies and corrosion rates for any given liquid or gaseous environment. 
In the chemical industry, this knowledge could be used to design or select the 
optimum alloy for any process equipment. Realistically, such an all-encompassing 
theoretical treatment is still beyond the capabilities of both the algorithms and the 
computing hardware, but the relentless advances in both hardware and software are 
making an increasing range of theoretical computations available to the industrial 
practitioner. However, effective application of computational chemistry requires 
collaboration among theoreticians, experimentalists and materials engineers, and 
judicious simplification of the problem. An important goal of this study is to 
understand the collaborations and simplifications necessary for successful application 
of computational chemistry to corrosion problems. 

Analysis of the Nitriding Process 

Nitriding is a chemical corrosion process that usually takes place at high 
temperature.(/,J-<5) Nitriding results from the diffusion of atomic nitrogen into a 
metal after decomposition of ammonia or molecular nitrogen at the metal surface. 
Once the nitrogen concentration in the metal exceeds the solubility limit, metal 
nitrides precipitate. The nitrides make the metal hard and brittle. The hardness 
increase is beneficial for case hardening of steel, but the brittleness leads to failure of 
ammonia handling equipment in processes such as nitric acid or amine production. 
Prevention of nitriding attack is an important consideration in these processes. 
Practical experience has led to the choice of high nickel alloys to resist nitriding 
attack in many applications. The purpose of this study was to investigate the 
mechanism of the reaction that supplies the atomic nitrogen at the metal surface. 
Understanding this step in the nitriding mechanism at a fundamental level will help 
explain the practical observations to date and possibly suggest optimum alloy 
composition for maximizing resistance to nitriding attack. 

Nitriding is a complicated gas-solid interaction phenomenon. In general, it 
involves three major steps: first, ammonia or nitrogen molecules in the gas phase 
diffuse to and stick on the metal surfaces; next, the adsorbed molecules are 
decomposed at the surfaces; finally the dissociated species further diffuse into the 
bulk. Nitriding has become a serious problem in recent years as the average service 
time of ammonia reactors has been increasing. It presents a great challenge to the 
materials science community to provide better, less costly alloys to serve as nitriding-
resisting materials. 

There have been several research efforts to explore the experimental conditions 
under which the nitriding process on a variety of alloy surfaces takes place.(i) 
Unfortunately, the vast number of possibilities makes it impractical to experimentally 
screen all the existing alloys with different compositions to obtain the desired 
physical/chemical properties. Furthermore, such experiments can be extremely 
expensive and inefficient. While many experiments have been carefully designed to 
test the nitriding-resisting properties for specific materials of interest, very little was 
revealed about the detailed nitriding processes at the metal surfaces. To date, studies 
on nitriding problem have been limited to a purely empirical description and thus the 
results cannot be used to predict improved nitriding-resisting materials. As a 
consequence, the selection of alloy materials for process equipment today is still 
largely dependent upon practical experience. Theoretical guidelines for the rational 
selection of optimum materials would be valuable to the chemical industry. 
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Although the three-step nitriding mechanism has been well known for many 
years, much work has been primarily concentrated on phenomenological descriptions 
of the nitriding process. While this approach has been successful to characterize the 
macroscopic nitriding processes based on thermodynamics and kinetics,(5-6) it is 
unable to provide information about the detailed reaction mechanisms at the 
microscopic level. Quantum mechanics provides a powerful tool to fulfill this task, 
and has been widely used for materials development in recent years. The quantum-
mechanical approach is not intended to replace the conventional macroscopic 
methods that have enjoyed a broad usage in the corrosion community; rather, it 
attempts to complement the conventional approach by yielding information about the 
microscopic nitriding processes. 

While real materials used in an ammonia reactor are alloys of a variety of 
metals, understanding the ammonia chemisorption and decomposition behavior on the 
surfaces of various pure metals is an important step towards to understanding the real 
nitriding process in ammonia plants. Furthermore, it is instructive to compare the 
nitriding process with the ammonia synthetic process, which has been extensively 
studied over the past few decades.(7-79). In fact, a nitriding process can be viewed 
as an important part of a reversed ammonia synthesis process catalyzed by a metal 
surface. Using various surface science and spectroscopic techniques, such as thermal 
desorption spectroscopy and UPS photoelectron spectroscopy, extensive experiments 
have been carried out to probe the microscopic processes involved in the catalytic 
reactions. In parallel, much theoretical work has focused on the nature of 
chemisorption of N H 3 and N 2 on the metal surfaces; however, very little effort has 
been devoted to the study of ammonia decomposition processes.(20-22) 
Computationally, it is often exceedingly difficult to calculate the energy structure for 
systems involving transition metals due to their large number of spin states. 

The present work is to investigate the nitriding mechanism at the surface of 
various pure transition metal by performing quantum-mechanical calculations. An 
important goal of this study is to explain the difference of reactivity among the pure 
metals (Fe, Ni and Cr) in response to the nitriding attack, and to test the theoretical 
techniques against the available experimental results. Ultimately, we would like to 
perform "computational experiments" to study the nitriding resisting properties for a 
variety of alloy materials and to provide theoretical guidance for optimal material 
selections. In this chapter, we present a combined theoretical approach based on the 
density functional theory (DFT) and the extended Huckel tight binding method 
(EHTB) to investigate the nitriding process on Cr(100), Fe(100) and Ni(100) 
surfaces.(23-25) Since these three metals are the most important chemical 
components of stainless steels, it is expected that the investigation on the behavior of 
ammonia chemisorption/decomposition at their surfaces will yield useful information 
about the nitriding mechanism in the alloy materials in ammonia reactors. 

It should be stressed that it is not our intention to pursue a rigorous quantum-
mechanical description of the nitriding system in the present work. Instead, we aim 
to gain physical insight into the nitriding mechanism at the transition metal surfaces, 
which will enable us to qualitatively predict the relative order of nitriding-resisting 
properties for these materials and, ultimately, for the alloys of interests. The DFT 
method was used to evaluate the chemisorption patterns and geometric parameters; 
subsequently, using the EHTB theory, the energy band structures of various 
configurations of chemisorption and decomposition patterns as well as binding 
energies were calculated. We compare the theoretical results with the photoelectron 
spectra for the ammonia chemisorption and decomposition species. The predicted 
relative order of nitriding-resisting properties for different metals wil l also be 
compared with material performance observed in practical experience. 
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Experimental Background 

The elements Fe, Cr and N i are the major components of stainless steels used in 
ammonia handling equipment. Our practical observation is that under the normal 
operating conditions, high nickel content materials are most resistant to nitriding, 
while high chromium content alloys show relatively poor performance for resisting 
the attack. Unfortunately, alloys with high percentage nickel content are usually 
much more expensive. In practice, in choosing stainless steel materials for ammonia 
handling equipment, one needs to consider both the actual service age of the 
equipment and the nitriding-resisting capability in order to maximize use of the 
materials at a minimum cost. 

Since a nitriding process bears considerable similarities to its reversed process, 
transition metal catalyzed ammonia synthesis, the results of the detailed studies of 
experiments at the microscopic level in the latter field should also be useful for study 
of nitriding. Of all the metal catalysts, the iron surfaces have received the most 
attention since they are most frequently utilized for ammonia synthesis.(74-79) 
Other metals, such as Ni , Cr and A l , and their alloys with Fe also play an important 
role in catalyzing the reactions. The ammonia catalytic process at the iron surfaces 
has been extensively investigated through a series of elegant experimental 
measurements by Ertl and co-workers.(7, 16-18) They showed that the ammonia 
decomposition at the iron surfaces is a many-step energy down-hill process. These 
steps include NH3 adsorption on Fe surfaces and the adsorbate, NH3(ad), subsequent 
dissociation into NH2(ad) and H(ad) adsorbates and eventually into N(ad) and H(ad) 
adatoms. Based on their experiments and some plausible estimates for the reaction 
intermediates, Ertl at al. constructed a potential energy diagram for the ammonia 
decomposition at iron surfaces. Furthermore, they carried out UPS photoelectron 
spectroscopic measurements to detect the intermediate ammonia fragments. It was 
shown that ammonia adsorption on a clean iron surface gives rise to two prominent 
peaks below the Fermi level in the spectrum, which correspond to the 3Ai (N lone 
pair) and IE (N-H bonds) energy levels of gas phase ammonia, respectively. When 
the system is exposed to ammonia at higher temperature (80°C), these two peaks shift 
up with relatively weaker intensities, which are associated with the ammonia 
fragment adsorbates, either NH2(ad) or NH(ad) or both. At even higher temperature 
(120°C), only one maximum in the spectrum was observed, which corresponds to the 
completely decomposed ammonia species: the nitrogen adatoms. The signal of 
hydrogen adatoms was too weak to be clearly resolved. 

In parallel to the work of Ertl and co-workers, experiments were also carried out 
to investigate the ammonia interactions with N i and A l surfaces. In particular, 
Huttinger and Kuppers proposed a many-step decomposition mechanism for NH3 at 
Ni ( l 10) surface, similar to die one for NH3 at iron surfaces. The estimated activation 
energy for NH(ad) to further dissociate into nitrogen and hydrogen atoms was found 
to be 47 kcal/mol, which was remarkably high. Furthermore, in addition to the two 
maxima of ammonia bands (IE and 3A0 found in the UPS spectrum for N H 3 on Ni 
surface, Seabury et al. also resolved the 2Ai band of ammonia at about 22 eV below 
the Fermi level when higher photon frequency was used.(75) To our knowledge, 
very little has been done for ammonia chemisorption and decomposition on 
chromium surfaces. Nevertheless, in view of the ammonia dissociation mechanism 
on Fe and Ni surfaces, it is reasonable to assume that the nitriding follows the same 
decomposition course at Cr(100). The experimental results for Fe and N i surfaces 
will be used to benchmark the theoretical calculations and to help improve the quality 
of extended Hiickel parameters to gain better accuracy. 
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Computational Details and Theoretical Model of a Nitriding System 

Computational Methods. The quantum mechanically more rigorous DFT method is 
known to be capable of providing highly accurate molecular geometries as well as 
system energetics in many cases. However, it is computationally intensive and thus 
one can only apply it to relatively small systems. To correctly describe a nitriding 
system, it is often necessary to model the chemisorption and decomposition of NH3 
on a large portion of a surface for at least two reasons. First, the adsorption of NH3 
and its fragments can take place, in principle, at any site of the surface. The 
possible adsorption modes include 4-fold hollow site, "bridge" site and "on-top" site, 
as shown in Fig. 1. Second, upon the decomposition, the fragments of NH3 may 
spread out on or defuse into the surface. To describe this phenomenon, it is 
necessary to include not only a large portion of the surface but also a few top layers of 
the metal in the modeling. It thus becomes computationally impractical to use the 
DFT method for such a complicated system. As an alternative, we utilized the 
computationally more efficient approach, EHTB method, to describe the electronic 
structures of the adsorption/decomposition system. The extended Hiickel method 
(EH), being computational simple and physically intuitive, is particularly useful for 
studies of molecules with a large number of atoms and has shown considerable 
success in study of many chemical and physical processes in condensed phase.(26-25) 
As a very crude approximation, the E H method usually does not yield quantitative 
results about the system energetics. Instead, it is often used to provide useful 
physical insight into the reaction mechanism and to qualitatively predicts the trends of 
a molecular process. Furthermore, it is known that the E H method is not suitable for 
geometry optimizations of molecular structures due to the lack of repulsive force. 
Therefore, it is necessary to supply the adsorption/decomposition structures for 
performing the E H calculations. The combined DFT and EHTB approach allows one 
to evaluate the adsorption structures for NHx(ad) (x=0, 1, 2, 3) and H(ad) on a small 
cluster of the metal surfaces by DFT and subsequently to perform the energy band 
structure calculations by EHTB. In the present study, the latter calculations were 
carried out for a sufficiently large surface unit cell with three layer surfaces, on which 
ammonia is chemisorbed and later decomposed. The required geometric parameters 
for the E H calculations were supplied by the DFT calculations. 

The Biosym DFT code, DMol, was utilized to evaluate the adsorption geometric 
parameters. We employed the double numerical basis set with inclusion of 
polarization functions. The Janak-Morruzi-Williams correlation functional was 
adopted with L Y P functional for non-local gradient correction. To enhance the SCF 
convergence, which appears to be a severe problem for many transition metal 
calculations, we used the level shifting technique by smearing a small amount of 
electron density in the energy levels above the Fermi level. Subsequently, we 
utilized the correlation-exchange potential generated from the previous SCF cycle and 
gradually reduced the smear value. We repeated this procedure until the smear value 
becomes negligible and SCF energies converge self-consistently. The specific initial 
smear values used in our calculations depend on the cluster systems and their sizes. 
Typically, for a iron cluster with 9 atoms, the smear value can be as high as 0.1 since 
there are many possible low lying states in the cluster and it becomes very difficult 
for the SCF to converge. Using the above procedure, the final smear value is reduced 
to less than 0.005. 

The program of the EHTB method was originally obtained from Professor M .-H. 
Whangbo. The E H parameters for Ni d-orbitals were slightly adjusted to make the d-
orbitals more defuse, which is in better agreement with the UPS photoelectron 
spectrum.(74) Except for Ni atom, the parameters used in the E H calculations can 
be found in Ref. 24. The double zeta values and their coefficients used to describe 
the 3d orbitals of Ni are listed in Table I. 
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Table I. Extended Huckel parameters of 3d-orbital of N i . 

orbital H u (eV) Ci C2 
Cl C2 

3d -9.9 6.50 2.00 0.5683 0.6292 

N H X (x=0-3) (ad) and H(ad) Chemisorption on Metal Clusters and Surfaces. The 
calculations were performed for rigid metal surfaces before and after the ammonia 
chemisorption and decomposition, which were directly obtained from the crystal 
structures. While Ni(100) is a densely packed surface, Cr(100) and Fe(100) exhibit 
relatively open structures and thus may be chemically more reactive. It has been 
generally accepted in the literature that the adsorption of N H 3 takes place with 
nitrogen "end-on" the metal atom and the three hydrogen atoms pointing away from 
the surfaces.(5,20) Moreover, Bauschlicher showed that for NH3 adsorption on 
Ni(100) surface the rotation around the principal ligand axis requires virtually no 
energy and such a conclusion was extended by Benndorf et al. to investigate ammonia 
adsorption and dissociation on a stepped Fe(s)(100) surface in their 
experiments.(<5,20) In the present work, we assume that the same adsorption pattern 
and properties are also applicable to Cr(100) and Fe(100) surfaces. Furthermore, to 
simplify the calculations, we only consider similar adsorption patterns for the 
decomposed species, N H X (x=0,l,2). It is understood that other adsorption modes, 
such as the 4-fold hollow sites and the "bridge" sites, can also be accessible by these 
species, particularly by the smaller ones, as demonstrated by a number of studies.(29-
37) However, it is beyond the scope of present study to include all the possible 
adsorption modes for these species in the calculations and then to statistically average 
out the system energies. Instead, we intend to choose a physically reasonable 
adsorption pattern to gain insight into the nitriding mechanism. In addition, the 
hydrogen adatoms are allowed to be distributed at any site of the surfaces. Since 
one of the main goals of the present study is to predict the relative order of nitriding-
resisting properties for different metal surfaces, we utilize the same adsorption pattern 
for all the metal surfaces to facilitate the comparison of band structures as well as 
binding energies. 

To obtain reasonable geometric parameters for the chemisorption/decomposition 
species, we employed small metal clusters to represent the surfaces and carried out 
density functional calculations. Typical structures of the clusters used in the 
calculations are shown in Fig. 2. Making use of the assumption that the system 
energies are insensitive to the rotation about the principal ligand axis of NHx(ad) 
(x=0-3), we imposed the point group symmetries in the calculations. The point 
groups are Cs for NH3(ad), C2v for NH2(ad) and C4V for NH(ad) and N(ad) on the 
metal surfaces, respectively. We then optimized the adsorption geometries on rigid 
metal surfaces. For small clusters, there appear considerable differences of 
adsorption binding energies between theory and experiment. For example, the 
binding energy of N H 3 on the iron cluster calculated with non-local gradient 
corrections was found to be about three times higher than the experimental value, 
which may be largely due to the oversimplified surface model. Nevertheless, the 
optimized geometric parameters seem to be in reasonable agreement with the 
available results in literature and with one's physical expectation.(79, 28) The 
calculated adsorption geometric parameters are summarized in Table II. 
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Figure 1. Ammonia chemisorption pattern on metal surfaces. 

Figure 2. Structures of chemisorption/decomposition species on metal clusters 
used in density functional calculations, (a). NH3 in "on-top" mode with 
C s symmetry, (b). N H 2 with C 2 v symmetry . (c). N H with C 4 v symmetry.. 
(d) Ν with C 4 V symmetry. 
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Table II. Bond distances (unit: A ) . 

N(NH 3) N(NH 2) N(NH) Ν Η 

Cr 1.99 1.99 1.96 1.85 1.55 

Fe 2.00 2.00 1.97 1.77 1.56 

Ni 2.01 2.00 1.98 1.80 1.54 

The model unit cell structure of ammonia and its composition species on Fe(100) 
surface used for the EHTB band structure calculations are displayed in Fig. 3. Here 
we utilized relatively large unit cells, which consist of 2x2 primitive unit cells of the 
surface, in the computations to facilitate the description of the decomposition at 
surfaces. In addition, we used three top layers of the metal to represent the surface 
structures. Our numerical tests with more surface layers indicate that the inclusion of 
three surface layers into the calculations is not only necessary but also sufficient. 
Upon the N-H bond dissociation, the adatoms, H(ad) and N(ad), are then distributed 
in the unit cell at various sites. Figure 4 depicts some of the 4-fold hollow-site 
adsorption patterns we investigated. Here the hydrogen adatoms and, in the last 
pattern, the nitrogen adatom are chemisorbed on the 4-fold hollow sites. We found 
that the band structures do not change significantly as one changes the adsorption 
sites for H(ad) and N(ad), as will be demonstrated later. The chemisorption and 
decomposition structures on Ni(100) and Cr(100) surfaces are similar to those shown 
in Fig. 3. The atom-atom distance of the metal surfaces (a) and the distance between 
two adjacent surface planes (d) are given in Table III. 

Table III. Surface geometry parameters. 

Metal α(Λ)3 d(A)b 

Cr(100) 2.88 1.44 

Fe(100) 2.87 1.43 

Ni(100) 2.49 1.76 

a a : atom-atom distance 
b d : distance between two adjacent surface planes 

Results and Discussions 
Band Structures of N H 3 Chemisorption/Decomposition on Cr(100), Fe(100) and 
Ni(100). For the adsorption pattern shown in Fig. 3, we calculated the energy band 
structures at each step of the nitriding process. In Fig. 5, we display the band 
structures of ammonia chemisoφtion/decomposition on Fe(100) surface. Figure 5(a) 
depicts the band structure of the clean Fe(100) surface, where the solid line describes 
the overall density of states and the dashed line represents the contributions from the 
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Figure 3.Fe(100) surface unit cell with N H 3 chemisorption/decomposition 
species in "on-top" modes, (a). N H 3 . (b). N H 2 + H . (c). N H + 2H. (d). 
N+.3H. 

Figure 4. Fe(100) surface unit cell with N H 3 decomposition species with some 
adatoms in 4-fold hollow modes, (a). N H 2 + H. (b). N H + 2H. (c). Ν + 
3H. (d). N + 3H. 
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d-orbitals of Fe. The Fermi level is at Ep = -8.35 eV. It is seen that the valence 
bands are overwhelmingly dominated by the d-orbital components of iron. The 4s-
and 4p-bands are pushed above the Fermi level, a typical situation for transition metal 
band structures. 

Figure 5(b) displays the density of states for ammonia chemisorption on the clean 
Fe(100) surface, where the solid line is for the total density of states while the dotted 
line projects the contributions to the energy bands from the p-orbitals of nitrogen 
atoms. It is seen first that the main features near the Fermi level essentially remain 
the same. Once again, they are mainly contributed by the d-orbitals of iron. 
Underneath the valence bands in the energy spectrum, one observes three maxima. 
Two of them are primarily contributed by the 3Ai (~ -14.5 eV) and IE (~ -16.5 eV) 
orbitals of ammonia. The 3Ai band is associated with the electron lone-pair of the 
nitrogen atom and the IE band corresponds to the N - H bond. This is in good 
agreement with the experimental observations for ammonia chemisorption on Fe and 
N i surfaces.(7,75) The third maximum observed in the energy band structure (~ 
-28.7 eV) is associated with the 2Ai orbital of ammonia, which qualitatively agrees 
with the UPS spectrum of ammonia on Ni surface.(7) The calculated Fermi level is 
Ep=-8.34 eV, indicating that the Fermi level is essentially not affected by the 
chemisorption. 

We next calculated the density of states for NH2(ad) and H(ad) on Fe(100). The 
results are depicted in Fig. 5(c). The Fermi level remains the same as in Fig. 5(b). 
The band structures near the Fermi level again remain essentially unchanged. 
However, the two maxima of the ammonia 3Ai and IE bands observed in Fig. 5(b) 
now split into three peaks, as indicated by the dotted line in Fig. 5(c). The sources 
for the band split come from the following. First, the maximum for the electron 
lone-pair of ammonia shifts up (roughly from -14.5 eV to -13.5 eV) with about the 
same intensity. However, as one of the three N-H bonds becomes broken, the peak 
associated with the N-H bonds in Fig. 5(b) splits into two maxima in Fig. 5(c). One 
(~-16.7 eV) corresponds to the N-H bonds of NH 2(ad) species and another (~ 
-14.7eV) reflects the contribution from the broken N - H bond. The 2Ai band shifts 
up about 0.5 eV. Furthermore, one observes from Fig. 5(c) that the peak at E=-14.7 
eV is twice value of the density of states contributed by the split IE band. In fact, the 
additional contribution comes from the Is orbitals of hydrogen atoms chemisorbed on 
Fe(100). Due to the rearrangement of the adsorbates, there appear to be some minor 
changes in the valence bands even though the basic profile remains similar to the one 
in Fig. 5(b). 

Following the decomposition of NH2(ad) species into NH(ad) and H(ad), we 
observe further changes in the energy spectrum, as shown in Fig. 5(d). As one more 
hydrogen comes out of the N-H bonds to become an adatom in each unit cell, it adds 
one more peak adjacent to the one associated with the Is orbital of hydrogen in Fig. 
5(c). Now there are two electron lone pairs whose energy bands are projected at 
about -13.5 eV with twice the density of states of the one in Fig. 5(c). The band 
associated with the remaining N-H bond shifts up to -15.6 eV, while the 2A1 band 
shifts up to -27.5 eV. The Fermi level is at EF=-8.35 eV. 

Finally, when the ammonia is completely decomposed, the energy bands of the 
IE and 3Ai orbitals of ammonia become essentially a single broader maximum 
located at -13.5 eV, as shown in Fig. 5(e). In addition, the Is band of hydrogen 
adatom represented by the three peaks shoulder by shoulder is further broadened since 
there are three hydrogen adatoms now in a unit cell. The 2Ai band further shifts up 
to -26.2 eV and the Fermi level shifts down slightly to EF=-8.36 eV. 

It is seen from Figs. 5(a) to 5(e) that the energy bands contributed by the p-
orbitals of the nitrogen atom gradually shift up in the decomposition process, which 
is in qualitative agreement with experimental results. The observation that the 
calculated 2Ai and 3Ai bands are about 20 eV and 6 eV, respectively, below the 
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_ 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 I | 1 
: Fe(100) 

ι . . ι . . . . _ 
00 : 

: NH3(ad)onFe(100) 

: 2 A i 1 3 A i 1 

(b) \ 

- NH2(ad) + H(ad)onFe(100) 

\ \ ι ι I ι ι ι ι I ι ι ι* ι I* ι * ι ι A 1 

(ο ; 

- NH(ad) + 2H(ad)onFe(100) » ; 

- N(ad) + 3H(ad)onFe(100) 

t Z1 

» : 

Binding Energy (eV) 

Figure 5. Band structures of N H 3 chemisorption/decomposition species on 
Fe(100) surface calculated for the adsorption patterns shown in Fig. 3. (a). 
Fe(100). (b). N H 3 on Fe(100). (c) N H 2 + H on Fe(100). (d). N H + 2H 
onFe(lOO). (e) Ν + 3H on Fe(100). 
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Fermi level is remarkably close to the experimental values (~22 eV and 6.5 eV, 
respectively). Nevertheless, compared with the experimental spectra, it may be 
observed that the IE band appears to be too close to the Fermi level (about 8 eV 
below the Ep while the experimental value is approximately 11 eV). The source of 
the mismatch may be largely due to the parameterization of the E H theory. Even so, 
the calculated spectra qualitatively agree with the profiles of UPS photoelectron 
spectra. 

Figure 5 describes the energy band structures only for the chemisorption patterns 
shown in Fig. 3. It is therefore important to examine the sensitivity of the band 
structures to the change of adsorption patterns. Our extensive numerical study 
indicates that the basic features observed in Fig. 5 do not change significantly. 
Figure 6 shows some typical results for different adsorption patterns depicted in Fig. 
4. It is seen that in all cases, the main energy bands described in Fig. 5 are also 
found in Fig. 6. The bands associated with the decomposition species shift only 
slightly. The results seem to suggest that photoelectron spectroscopy is incapable of 
providing information about the chemisorption modes of the nitriding species. 

We next examine the band structures of a nitriding system on Cr(100) surface. 
The calculated results are displayed in Fig. 7. It is seen that the qualitative features 
of the energy spectra are very similar to those observed in Fig. 5. This is particularly 
the case for the p-bands of the nitrogen atom. Again, the results presented in Fig. 7 
are in qualitative agreement with the experimental spectra of the nitriding system on 
Fe surfaces. Compared with Fig. 5, one sees that the energy bands in Fig. 7 are 
relatively broader. This is primarily due to the slightly more loosely packed surface 
structure of chromium and larger d-orbital overlaps. 

Similar energy spectra can be observed in Fig. 8 for the nitriding system at 
Ni(100) surface. Geometrically, Ni(100) is a much more densely packed surface 
than both Cr(100) and Fe(100). One would thus expect that the energy bands should 
be much broader since a densely packed structure usually results in stronger orbital 
overlap which gives rise to broader energy bands. However, electronically, the d-
orbitals of nickel are known to be rather defuse, which leads to smaller orbital 
overlap. In the E H treatment, the d-orbitals are described with double zeta 
parameters. In the present work, these parameters were adjusted to qualitatively 
reproduce the photoelectron spectrum of N i ( l l l ) surface.(74) Compared with the 
energy band structures of Fe(100) and Cr(100), it is seen that the d-orbital bands of 
Ni(100) are relatively narrow due to its diffuse d-orbitals. 

Chemisorption Binding Energy. At each step of the ammonia decomposition 
processes on the metal surfaces, one can readily evaluate the total energies of the 
systems, which are listed in Table III. For the reaction: 

M + NH 3(g) -> M + NHX(ad) + (3 - x)H(ad), 

where χ = 0,···,3 and M represents the metal surfaces, the chemisorption binding 
energy is defined as: 

~ ^ M + A D ~ ~~ ^ N H j ( g ) ' 

where £ M + A D is the total energy of the metal surface plus the ammonia decomposition 
species that stick to the surface, £ M + A D t h e energy of the surface and Ε^{%) the 
energy of gas phase ammonia. The calculated binding energies at each step of the 
chemisorption and decomposition processes on the metal surfaces are depicted in Fig. 
9. Here Ο represents the starting point where the binding energies are zero. The 
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_ . . . . , ι ι ι . . ι ι ι • 

NH^+HMonFeaOO) , \ β 
' ι 4 ι ι I ι ι ι ι I ι ι ι* , y , *, , 1 , 

j (a) : 

NH(ad) + 2H(ad) on Fe(100) 1 (b) : 

N(ad) + 3H(ad) on Fe(100) J 

1 β \ Ί 
N(ad) + 3H(ad)onFe(100) 

" . . A . . . . . . . . . . . Ail A . . /. . . 

(d) 

Binding Energy 

Figure 6. Band structures of N H 3 decomposition species on Fe(100) surface 
calculated for the adsorption patterns shown in Fig. 4. (a). N H 2 + Η on 
Fe(100). (b). N H + 2HonFe(100). (c) Ν + 3H on Fe(100). (d). Ν + 3H 
on Fe(100). 
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'_ . 1 
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- NR,(ad) + H(ad) on 0(100) 1 
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V 
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1 ' 1 V 

I 1 1 1 1 
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• . . .Α. ι . . . . ι . , . . 4A.A. . A / i . .! 

ι ι 1 1 1 1 

Binding Energy (eV) 

Figure 7. Band structures of N H 3 chemisorption/decomposition species on 
Cr(100) surface calculated for the adsorption patterns shown in Fig. 3. (a). 
Cr(100). (b). N H 3 on Cr(lOO). (c) N H 2 + H on Cr(lOO). (d). N H + 2H 
onCr(lOO). (e) Ν + 3H on Cr(lOO). 
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Figure 8. Band structures of N H 3 chemisorption/decomposition species on 
Ni(100) surface calculated for the adsorption patterns shown in Fig. 3. (a). 
Ni(100). (b). N H 3 on Ni(100). (c) N H 2 + H on Ni(100). (d). N H + 2H 
onNi(lOO). (e)N + 3HonNi(100). 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 1

4,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
02

6

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



374 COMPUTER-AIDED MOLECULAR DESIGN 

first step I corresponds to the chemisorption of ammonia on the metal surfaces. The 
steps from II through IV are associated with the decomposition. It is seen that the 
chemisorption/decomposition on the Cr(100) surface is a straight energy down-hill 
process, indicating nitriding can occur much more easily on chromium. On the other 
hand, at Ni(100) surface, the ammonia chemisorption is an energetically favorable 
process. However, it requires a considerable amount of energy to further decompose 
into the adatoms. Furthermore, the nitriding process at Fe(100) surface appears 
basically to be energetically accessible except in the last step in which the binding 
energy is slightly higher than the previous step. Qualitatively, the trend of the 
nitriding process on Fe(100) predicted from the present calculations agrees reasonably 
well with the experimental results by Ertl and co-workers.7 Moreover, we have 
observed in our ammonia plants that chromium-containing alloys used for materials 
in our chemical reactors are especially susceptible to the nitriding process, while the 
addition of nickel improves the resistance to this type of corrosion. The iron metal 
appears to be superior to chromium in resisting nitriding; however, nickel is the best 
among the three metals. This observation is in good agreement with the above 
theoretical results. 

The reactivity of the nitriding species on different metals depends on two 
primary factors. The first one is related to the lattice structures, which will mainly 
affect the diffusion rate of these species in the bulk. While Cr(100) surface has the 
largest lattice constants, the Ni(100) surface is most densely packed. Thus the 
atomic/molecular diffusion is much easier in Cr than in Ni . The second factor is 
related to the electronic structures of the metals. It is known that the d-orbitals of Ni 
are more diffuse than those of Cr and Fe. Therefore, their interactions with the 
nitriding species are the weakest. 

Population Analysis. In order to obtain physical insight into the interaction between 
the metal surfaces and the ammonia decomposition species, we performed Mulliken 
population analysis at each step of the chemisorption/decomposition processes. The 
results are displayed in Fig. 10, where the triangles describe the population at 
Ni(100), spheres for Fe(100) and squares for Cr(100). Here Ο represents either a 
clean metal surface (Fig. 10(a)) or gas phase ammonia (Fig. 10(b)). I to IV denote 
the same steps as in Fig. 9. Figure 10(a) depicts the population of the central metal 
atom that directly interacts with the nitrogen atom. It is seen that qualitatively, the 
population of the central atom decreases in the chemisorption and decomposition 
processes. However, from Fig. 10(b), one observes that upon the ammonia 
chemisorption on the metal surfaces, the population on the nitrogen atom rapidly 
decreases. This indicates that the population change on the central metal atom is not 
due to the electron transfer from the metal to ammonia. In contrast, it is the electron 
lone pair in ammonia that is attracted to the metal surfaces, which can be readily 
delocalized into the other surface atoms through the well-overlapped orbitals. 

In the ammonia decomposition process on the metal surfaces, the population of 
the central atom changes slowly, while the population of the nitrogen atom increases 
very rapidly. This is because the decomposed ammonia species need a specific 
number of electrons to compensate the broken N - H bonds to stabilize the nitrogen 
atom. The required electrons can be transferred from the central atom. The empty 
orbitals of the central atom can then be readily filled out by electrons from other 
atoms of the metal surfaces. In Fig. 10(c), we show the overlap population between 
the central atom and the nitrogen atom. It is seen that qualitatively the overlap 
slowly increases as ammonia becomes decomposed on the surfaces. 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 1

4,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 3
1,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

58
9.

ch
02

6

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



26. CHENG ET AL. Nitriding Process on Cr, Fe, and Ni Surfaces 375 
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Figure 9 N H 3 chemisorption/decomposition species binding energies on 
Fe(100), Cr(100) and Ni(100) surfaces. 

Figure 10. Mulliken electron population analysis, (a). Population of the metal 
atom that directly interacts with the Ν atom in the nitriding process, (b).. 
Population change of the Ν atom in the nitriding process, (c). Overlap 
population between the metal atom and the Ν atom. 
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Conclusions 

In this chapter, we have presented a combined approach based on the DFT method 
and the EHTB theory to investigate the nitriding process on Cr(100), Fe(100) and 
Ni(100) surfaces. The nitriding process is broken into a series of chemisorption and 
decomposition steps, at each of which we evaluated the chemisorption geometries by 
using the DFT method. The calculated geometric parameters are then used for the 
E H calculations to obtain the surface energy band structures and the chemisorption 
binding energies. The E H method allows computations for extended structures with 
a relatively large unit cell, which is necessary for detailed modeling of chemisorption 
and decomposition systems. We showed that the calculated energy band structures 
are in good agreement with the UPS photoelectron spectra. The calculated 
chemisorption binding energies for nitriding on Fe(100) surface also qualitatively 
agree with the experimentally estimated results. The population analysis at each step 
of the chemisorption/decomposition process on the metal surfaces yields useful 
information about the electron transfer mechanism in the nitriding process. The 
theoretical results suggest that Ni is a better nitriding-resisting material than Fe metal 
and the latter is superior to Cr. This conclusion is consistent with our experimental 
observations. 

The present study deals only with nitriding at pure transition metal surfaces. 
The insight gained from this work should be useful for assisting selection of nitriding-
resisting materials used for ammonia handling equipment. In practice, a real 
nitriding process takes place at alloy surfaces. A more realistic physical model for 
those surfaces would be an alloy surface model. In principle, the present approach 
can be readily extended to this type of systems to help selection of nitriding-resisting 
materials. This work is currently being undertaken. Furthermore, in the present 
study, we employed a rigid surface model to simplify the calculations. For a strong 
chemisorption system, the lattice relaxation may be a significant process. In 
addition, to correctly describe the decomposition process, it is in principle necessary 
to sample a sufficiently large number of adsorption configurations on the surfaces. 
However, in the present work, we found no significant changes in the band structures 
as well as the binding energies for the cases we studied. 
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Chapter 27 

Computational Analysis of Azine-N-oxides 
as Energetic Materials 

James P. Ritchie 

Los Alamos National Laboratory, Mail Stop B214, Los Alamos, NM 
87544 

A BKW equation of state in a 1-dimensional hydrodynamic sim
ulation of the cylinder test can be used to estimate the perfor
mance of explosives. Using this approach, the novel explosive 1,4-
diamino-2,3,5,6-tetrazine-2,5-dioxide (TZX) was analyzed. De
spite a high detonation velocity and a predicted CJ pressure com
parable to that of RDX, TZX performs relatively poorly in the 
cylinder test. Theoretical and computational analysis shows this 
to be the result of a low heat of detonation. A conceptual strat
egy is proposed to remedy this problem. In order to predict the 
required heats of formation, new ab initio group equivalents were 
developed. Crystal structure calculations are also described that 
show hydrogen-bonding is important in determining the density 
of TZX and related compounds. 

ZND theory identifies the Chapman-Jouget (CJ) state as uniquely character
istic of an explosive (1). Consequently, the detonation velocity and pressure 
associated with this state are frequently cited as figures of merit for an explo
sive. This state point is found as the point of tangency of the Rayleigh line, 
the slope of which is related to the detonation velocity, and the Hugoniot of 
the detonation products, as shown in Figure 1. (A more complete description 
may be found in Reference 1.) Thus, in this simple one-dimensional model, the 
explosive is shocked up the solid Hugoniot and decomposes as it decays down 
the Rayleigh line to the CJ state. The explosive products then expand from 
this state along an isentrope. 

With this theory, it is possbile to use BKW (2) or many other chemical 
equations of state to locate the C J state and compute a variety of explosive prod
uct properties, including their shock hugoniots and expansion isentropes. The 
detonation velocity, D C J , is especially important as it is the steady propaga
tion rate of the detonation and can be accurately measured. Thus, a knowledge 
of a candidate explosive's composition, bulk density, and heat of formation is 

0097-6156/95/0589-0378$12.00/0 
© 1995 American Chemical Society 
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3 ° 
2 6 

• • 1 1 1 1 I 

i \ « — C J State 

\ V 
\ \ \ 

1.8 2.0 2.2 2.4 2.6 2.8 3.0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
V (cc/g) 

Figure 1. Simple model of 1-D plane detonation. Explosive is shocked up the 
solid Hugoniot ( ) then decomposes as it decays down the Rayleigh line 
(straight ) to the CJ state, where the decomposition is complete. The CJ 
state can be found as the point of tangency between the Rayleigh line and the 
detonation product Hugoniot (curved ). The explosive expands along the 
isentrope ( ) through the CJ state. 

sufficient to allow the use of BKW for its characterization. This emphasizes the 
need for accurate models of heats of formation and crystal density. 

Although the ZND moael and the thermodynamic quantities it employs are 
important, as are their accurate calculation, the performance of an explosive 
is usually measured experimentally by its ability to push metal. Thus, an 
assessment of the performance of an explosive requires further consideration. 
The cylinder test is one experimental measure of the ability of an explosive to 
push metal (3). Typically a foot long one-inch i.d. copper cylinder with a .1 
inch thick wall is loaded with HE. The explosive is initiated at one end and a 
detonation propagates along the cylindrical axis causing the walls to expand 
radially. The wall velocity is measured at several distances of expansion. It 
has become standard practice to refer to the wall velocities at 5 and 19 mm 
expansion as a measure of the performance of an explosive. These values have 
been tabulated for common explosives(4). 

Two-dimensional hydrodynamic simulations of the cylinder test have been 
performed using chemical equations of state. The simulation proceeds by finite-
difference solution of partial differential equations derived from consideration of 
the conservation of mass, momentum, and energy and yields the time evolution 
of an initial configuration. Using this approach, Souers and Kury find (5) that, 
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380 COMPUTER-AIDED MOLECULAR DESIGN 

when appropriately scaled, BKWR (6) gives the best fit of the experimental 
data compared with JCZ3 (7) and CHEQ (8). Kerley and Christian-Frear (9) 
have used the PANDA model (10) to realistically simulate cylinder tests. 

Doherty, Short, and Kamlet (11) have related cylinder wall velocities to 
simple chemical and physical properties; namely, the heat of detonation, num
ber of gas moles created, the sample density, and mole fraction of water. Al
though these relations are simple, they lack an theoretical basis and, in fact, 
are empirical fits of existing data. 

A one-dimensional hydrodynamic simulation of the cylinder test can be 
quickly and easily performed to obtain wall velocities at various expansions. In 
order to make the simulation one-dimensional, the initial state of the explo
sive is taken to be completely burned at its initial density. In Figure 1, this 
corresponds to a vertical Rayleigh line and infinite detonation velocity. This 
procedure neglects the portion of the expansion isentrope above the initial den
sity of the explosive. In addition to providing quantities directly comparable 
with experiment, the simulation also samples a large proportion of the expan
sion isentrope, effectively measuring the work performed by the explosive over 
many volume expansions. This approach also gives consideration to the initial 
density of the explosive, the number and kinds of gas molecules produced, and 
the energy of decomposition. All these factors influence the description of the 
isentrope and hence the performance of an explosive. These hydrodynamic sim
ulations provide a different measure of an explosive's performance as opposed 
to consideration of the CJ state, which is only a single point on the expansion 
isentrope, but is weighted more heavily in small volume expansions and in other 
geometries. Because the hydrodynamic simulation is one-dimensional, the ab
solute values of the wall velocity are not expected to be realistic. Nonetheless, 
a correlation of calculated and observed wall velocities at 19 mm expansion 
proves to be a useful measure of explosive performance. 

An interesting case history in the development of explosives is provided by 
l,4-diamino-2,3,5,6-tetrazine-2,5-dioxide (TZX), which was first synthesized by 
M.D. Coburn at LANL. It has been discussed previously (12). Its structure is 
shown in Figure 2, along with those of some common HE's. Consideration of 
the CJ state alone for TZX, however, proves to be very misleading in terms of 
its performance in the cylinder test. In this report, the use of one-dimensional 
hydrodynamic simulations using a BKW equation of state is described. The 
performance of TZX is accurately described using this approach. A conceptual 
strategy is outlined to improve the performance of some nitrogen containing 
heterocycles. In order to facilitate assessments of such explosives, methods 
for obtaining their heats of formation and crystal density are examined and 
extended. 

Methods and Results 

B K W and Hydrodynamic Simulations: Some observed and calculated 
properties of TZX and RDX are shown in Table I. Comparison of these quanti
ties shows that TZX has a higher predicted CJ pressure and detonation velocity 
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NH 2 N 0 2 Jj°2 

N ^ N - ° / Ν Λ 
ι Ο J. ι ι Ο 2 Ν · Ν r 

, Ν ^ , Ν Ν Ν Y 7 

N-NO. 

N0 2 

TZX RDX HMX 

BTF HNB NM 

Figure 2. Structures of explosives referred to in this work. 

than RDX, which is an explosive of considerable practical importance. In ad
dition, TZX has a higher density and heat of formation than RDX. Another 
characteristic of an explosive is its heat of detonation. An idealized value of 
this quantity for C,H,N,0 containing explosives can be obtained by assuming a 
standard set of detonation products (4). First, it is assumed that as much water 
(as a gas, H / = —57.5 kcal/mol) as possible is formed; the remaining oxygen 
is then used to create carbon dioxide (H/ = —94.05 kcal/mol). The remaining 
atoms are combined to yield the elements in their standard states. Calculation 
of this quantity for HMX, RDX, and TZX yields: 1.48, 1.48, and 1.07 kcal/g, 
respectively. Thus, TZX compares unfavorably with other high-performance 
HE's on this basis. 

The one-diemnsional hydrodynamic computer code SIN (2) was used in 
the manner described in the introduction to perform simulations of the cylinder 
test. The explosives shown in Table II were studied. Sample BKW and SIN 
input decks are shown in appendixes A and Β for reference. In the BKW 
calculations, the RDX parameter set and identical molecular co-volumes were 
used throughout. SIN produced plots of the cylinder wall velocity versus time. 
Wall velocities at 19 mm expansion were determined from these plots and are 
shown for the explosives examined in Table II under Vig / c \ 

NOTE: Appendix A appears on page 392; Appendix Β appears on page 393. 
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382 COMPUTER-AIDED MOLECULAR DESIGN 

Table I. Observed and calculated quantities for TZX and RDX 

TZX RDX 

Observed Density (g/cc) 
Observed H / (kcal/mol)(c) 
D C J (mm//is) 

1.86 
39.0 

1.80 
14.7 

Obs. 8.75 
8.75 
347 
2587 

BKW Calc. 
BKW Calculated P C j (kbar) 
BKW Calculated TCj (K) 

8.85 
354 
1702 

Experimentally measured D^j and PCJ have been compared before with 
those computed using BKW and are not repeated in Table II (2). The cal
culated values are listed there for reference. For TNT, the calculations were 
also performed using the TNT parameter set in the BKW run. As shown in 
Table II, this had a noticeable effect on the CJ state, but a much lesser one 
on Vj9 / c \ HNB also deserves comment because its calculated CJ parameters 
are in remarkably poor agreement with those observed: D C J =9.34 mm//is and 
P C J «400 kbar (13). 

Comparison of the calculated and observed wall velocities shows the calcu
lated values to be systematically too high. When the observed and calculated 
values of V19 are plotted, a good linear correlation between them is found, as 
shown in Figure 3. V19 is poorly predicted for TATB. In this instance, however, 
diameter effects are likely to be important. Thus the large deviation from that 
predicted has its basis in a real physical effect. Consequently, a correlation 
for ideally detonating explosives should neglect this point, until data at larger 
cylinder diameters becomes available. This was done in determining the corre
lation equation shown along the bottom of the plot. BTF has the next largest 
error in predicted and obsered values. This was the only explosive examined in 
establishing the correlation that produces no water on detonation. The error 
in the predicted V19 is less than 3%. 

After the correlation had been established, HNB was considered. The pre
dicted wall velocity from the correlation equation is 1.91 mm//xs; the observed 
value is 1.95 mm//is, a difference of less than 3%. 

The cylinder test for X-0535, which contains predominately TZX, shows 
that its performance is much less than that of RDX. This large difference cannot 
be accounted for by the fact that the comparison is performed for pure RDX 
versus a formulation containing TZX. Further information about the poor per
formance of TZX was obtained by performing calculations for two hypothetical 
forms of TZX, one in which the density was increased to 1.95 g/cc and one in 
which the heat of formation was raised to 102. kcal/mol, which results in a heat 
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1D lin. Cylinder Test (BKW EOS) 

~ i : 1 1 1 1 1 1 1-
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

Calculated V19 (mm/us) 
Figure 3. Correlation between calculated and observed wall velocities. 

of detonation of 1.5 kcal/g. The artificial values used in these calculations are 
comparable to those of RDX and HMX. All other quantities were fixed at values 
corresponding to those of the real material. The BKW and SIN calculations 
were repeated and the results are summarized in Table III. The predicted Vig's 
for both of these hypothetical forms show improvements over that found for 
the real material, but the improvement in performance is much larger when the 
heat of formation is increased. Thus, the poor performance of TZX is clearly 
due to a low heat of detonation, as the earlier argument above suggested. 

Table III. Results of BKW Calculations for a Hypothetical TZX-like Explosive. 

High Density 
"TZX" 

High Energy 
"TZX" 

Assumed Density (g/cc) 1.95 1.86 
Assumed H / (kcal/mol) 39 102 

Calculated P C J (kbar) 402 394 
Calculated D C J (mm///s) 9.23 9.12 
Predicteda V19 (mm//is) 1.71 1.87 

a Predicted value is found using calculated value in the equation shown in 
Figure 3. Predicted V19 = 1.62 mm//is for pure TZX. 
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27. RITCHIE Computational Analysis of Azine-N-oxides 385 

One means of improving the heat of detonation of TZX or other nitrogen-
containing heterocycles is to introduce additional oxygen. This allows excess 
carbon to be oxidized to form carbon dioxide. TZX of course represents the 
embodiment of this stragegy in that l-4-diamino-2,3,5,6-tetrazine(DAT) is not 
expected to be an explosive. Thus simply converting aromatic nitrogen atoms 
to the corresponding N-oxides is anticipated to raise the heat of detonation of a 
molecule, if it originally produced an excess of carbon. In this regard, molecules 
I (14) and II (15), below, are interesting to consider. These molecules contain 
adjacent N-oxides. They also have been synthesized. The crowding of the 
adjacent N-oxides is of interest because of the additional energy it is likely to 
impart to the molecule. An evaluation of this factor and an estimate of these 
and related molecules as energetic materials requires heats of formation and 
crystal densities. In order to obtain these quantities for the molecules under 
consideration, additional calculations were performed as described next. 

I I I 

Ab Initio G r o u p Equivalents for Heats of Formation: Wiberg, Nakaji, 
and Breneman (16) derived ab initio group equivalents to estimate the gaseous 
heats of formation of azines. Equation 1 is used for this purpose, where Etot is 
the total energy from the ab initio calculations and Ν,· is the number of groups 
corresponding to the energy equivalent E;; Etot and E; are in a.u., while Hf is 
obtained in kcal/mol. 

Hf

298 = 627.51 x (Etot + J^(Ni x £,·)) (1) 
i 

We adopted the Car — H and Nar equivalents previously determined at 
the MP2 and MP3 level.(15) In addition, we performed calculations using 
the MP4(SDTQ) method and developed group equivalents at this level. The 
Car — H and Nar MP4 equivalents were determined using only the observed 
heats of formation of benzene and pyridine. Thus the equivalents at this level 
are not as well calibrated as those at MP2 and MP3, which were determined 
using a larger experimental database. Nar — Ο and Car — NH2 equivalents are 
required to calculate a Hf for TZX and other azine-N-oxides. Measured ii/'s of 
aniline and pyridine-N-oxide are available for this purpose. Unfortunately, this 
uniquely determines the equivalents, which is undesirable. The experimental 
values appear to be accurate, but it is likely that the resulting errors in the 
calculated Hf's will be larger than those found in the earlier work. 

Total calculated energies for several calibration compounds, azines, and 
azine-N-oxides are shown in Table IV. In all instances, molecular geometries 
were optimized at the RHF/6-31G* level. With the exception of aniline, all the 
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386 COMPUTER-AIDED MOLECULAR DESIGN 

molecules were constrained to be planar. Aniline is known to possess a pyrami
dal amino group, although the planar-pyramidal energy difference is small, as 
shown in Table IV. So, it seems likely that the optimal geometry of the other 
amino-group containing molecules may also be non-planar. The group equiva
lent, however, was derived using the pyramidal geometry. This may cause the 
Hf of such molecules to be somewhat overestimated. 

Table IV. Calculated energies obtained using the indicated theoretical method. 
Energies were obtained using the RHF/6-31G* optimized planar geometries and 
6-31G* basis set throughout, except for the aniline (py.) calculation, in which 
the amino group was pyramidal. 

RHF MP2 MP3 MP4(SDTQ) 

Benzene -230.703137 -231. .456505 -231.485222 -231.529688 
Aniline (py.) -285.730822 -286. .648505 -286.680310 -286.731673 
Aniline (pi.) -285.728227 -286. .645308 -286.677003 -286.728158 
Pyridine -246.695820 -247. .480360 -247.502442 -247.549709 
Pyridine-N-oxide -321.473768 -322. .452900 -322.466279 -322.530149 
Pyrazine -262.683005 -263. .500213 -263.515707 -263.565549 
Pyrimidine -262.693488 -263, .506478 -263.522476 -263.572534 
Pyridazine -262.650029 -263, .469882 -263.485466 -263.536251 
s-Triazine -278.695843 -279, .535017 -279.545486 -279.598109 
Melamine -443.860580 -445, .174943 -445.197915 -445.267108 
s-Tetrazine -294.592926 -295, .477477 -295.480813 -295.537874 
l,4-Diamino-2,3,5,6- -404.671096 -405, .889518 -405.895167 -405.966694 
tetrazine 
1,4-Diamino-2,3,5,6- -554.242424 -555, .861070 -555.840745 -555.950532 
tetrazine-2,5-dioxide 
Pyrazine-di-N-oxide -412.234811 -413 .443425 -413.439431 -413.524027 
Pyrimidine-di-N-oxide -412.230887 -413, .438271 -413.435156 -413.520431 
Pyridazine-di-N-oxide -412.203017 -413, .423889 -413.413820 -413.504075 

The resulting group equivalents and calculated heats of formation are 
shown in Tables V and VI, respectively. Because the MP2 and MP3 calculations 
are better calibrated and include some accounting for electron correlation, these 
results are preferred. As shown in Table VI, the difference between these two 
methods is typically small, but reaches a maximum of 8.3 kcal/mol for TZX; 
other differences are typically half this size or less. The MP4 heats of formation 
show several differences from those at MP2 and MP3. In general, the differ
ences, where they exist, are about 2-3 kcal/mol, which is not surprising because 
these equivalents are less well calibrated than the others. This suggests that 
the perturbation expansion is converging reasonably and that the accounting 
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27. RITCHIE Computational Analysis of Azine-N-oxides 387 

for electron correlation at MP2 and MP3 is adequate for our purposes. This 
behavior is in marked contrast to the results obtained at the RHF level, which 
show several differences, some as large as 20 kcal/mol from those at MP2 and 
MP3. 

Table V. Group increments (a.u.) for obtaining heats of formation using the 
indicated theoretical method with the 6-31G* basis set. 

RHF MP2 MP3 MP4 

Car' •H 38.45546a 38.58138a 38.58611a 38.59354 
N a r 54.46976a 54.62523a 54.62378a 54.63555 
Car' -NH2 93.48667 93.77475 93.78291 93.79712 
N a r -*0 129.22993 129.57947 129.56920 129.59592 

a Reference 14. 

There is only one new directly pertinent theory-experiment comparison 
shown in Table VI. For melamine, the MP2 and MP3 #/s are somewhat higher 
than that observed. This difference could be due to the use of a planar geometry 
in the calculations, but the difference is not large and is a useful check of 
the Car — NH2 equivalent, which was determined with only one experimental 
datum. The i ï / ' s of diaminotetrazine and TZX have been measured at LANL. 
The values obtained, however, are for a poly crystalline sample, not a gaseous 
molecule, as the calculations give. The difference between these numbers is 
the heat of sublimation. For these two molecules, the difference between the 
calculated and observed Hf values gives numbers that are sensible for this 
quantity for molecules of this size. 

The PM3 semi-empirical molecular orbital method (17) was also used to 
calculate H/s. Comparison of the results obtained at this level with those at 
MP2 and MP3 show several large differences. One especially pertinent example 
is the relative i ï / ' s of diaminotetrazine and TZX. According to the ab initio cal
culations, oxidation of the former to give the latter lowers the Hf by more than 
30 kcal/mol. PM3 on the other hand, shows a small increase. This difference 
results in a significantly higher heat of detonation for TZX and an overestimate 
of its detonation performance. 

Predicted H/s of the di-N-oxides of pyrazine, pyrimidine, and pyridazine 
show an increase in the heat of formation with decreasing distance between the 
N-oxides. The additional energy available in pyridazine-di-N-oxide is approxi
mately 12.5 ± 3 kcal/mol. This increase is less than that found in pyridazine 
itself of about 23 kcal/mol. So the adjacent lone-pairs are more destabiliz
ing than adjacent N-oxides. Also, the destabilization found from the ab initio 
calculations is much less than that found with the PM3 method. 
Crystal Structures: Electrostatic interactions are important in molecular 
crystal structures (18). Atomic charges determined by fitting the electrostatic 
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388 COMPUTER-AIDED MOLECULAR DESIGN 

Table VI. Calculated and observed standard gaseous H/'s (kcal/mol). 

RHF MP2 MP3 MP4 PM3 Obs.a 

Benzene 18. .6* 19. .9» 19.76 19.8C 23.5 19.8 ± .2 
Aniline0 (py.) 20, .8 20, .8 20.8 20.8 21.4 20.8 ± .6 
Pyridine 32 .3* 32 .5* 32.66 33.6C 30.4 33.6 ± .2 
Pyridine-N-oxidec 21, .0 21. .0 21.0 21.0 27.3 21.0d 

Pyrazine 49, .2* 47, .5* 47.96 50.0 39.4 46.9 ± .3 
Pyrimidine 42, .6* 43 .6* 43.66 45.6 38.0 46.8 ± .3 
Pyridazine 69, .9* 66, .6* 66.96 68.4 56.0 66.5 ± .2 
s-Triazine 50 .1» 53 .2* 52.86 55.9 46.3 54.2 ± .2 
Melamine 5 .5 15, .7 13.9 19.4 28.8 12.4 ± 1. 
s-Tetrazine 123 .6* 116, .8* 117.06 120.1 94.7 (117.06) 
l,4-Diainino-2,3,5,6- 113 .8 101, .0 104.0 106.5 87.4 (71.2)e 

tetrazine 
l,4-Diamino-2,3,5,6- 81. .8 61, .4 69.7 66.9 93.4 (39.2)e 

tetrazine-2,5-dioxide 
Pyrazine-di-N-oxide 29 .4 25 .7 27.2 26.3 39.5 
Pyrimidine-di-N-oxide 31 .9 29 .0 29.9 28.6 30.3 
Pyridazine-di-N-oxide 49, .4 38 .0 43.3 38.9 70.1 

a Unless noted otherwise, values from J.B. Pedley, R.D. Nay lor, S.P. Kirby 
Thermo chemical Data of Organic Compounds, 2nd Ed., Chapman:New 
York, 1986. 

6 Reference 14. 
c Uniquely determined by the available data. 
d L. Shaofeng, G. Pilcher, J. Chem. Thermody., 1988, 20, 463. 
e Value is for the poly crystalline material. Determination by M. Stinecipher, 

LANL. 

potential are frequently used for calculating this quantity. The CHELPG pro
cedure was used in this investigation (19). Alternatively, Hirshfeld (20) atom-
centered multipole expansions (ACME's) can be used that are obtained from 
direct integration of the electron density (21). Figure 4 shows a comparison 
of the electrostatic potential surrounding TZX obtained using atomic charges 
from the CHELPG procedure and ACME's truncated at quadrupoles (1=2) and 
octapoles (1=3). 

The ability of the charge models to reproduce the potential is measured 
by the root-mean square (RMS) and relative root-mean square (RRMS) er
rors. These quantities were evaluated on a rectilinear mesh that enveloped the 
molecules. The mesh points were spaced .25 A apart and the closest approach 
of the boundary of the mesh to an atom of the molecule was 5 A. At each 
point of the mesh, the potential was evaluated using either the model charge 
distributions or rigorous formula as implemented in GAUSSIAN92 (22). The 
errors in the fit were binned according to the value of the potential. Three 
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27. RITCHIE Computational Analysis of Azine-N-oxides 389 

T Z X P D C ' t T Z X L = 2 T Z X L = 3 

Figure 4. Electrostatic potential of TZX from potential derived charges (PDC) 
and ACME's truncated at quadrupoles (1=2) and octopoles (1=3). Results from 
RHF/3-21G//RHF/3-21G calculations are shown. Positive values (line), nega
tive values (dash), and zero (chain-dot) are shown at 10 kcal/mol/e intervals. 

bins were used corresponding to values of the potential less than -4.18 kj/mol, 
between -4.18 and 4.18 kj/mol, and larger than 4.18 kj/mol. This procedure 
was followed to allow the fits of positive and negative regions to be examined 
separately. 

The results for diaminotetrazine and TZX are shown in Table VII. It is 
found that ACME's at successively higher levels reduce the RMS and RRMS 
errors. In the cases examined, the use of quadrupoles results in lower RMS and 
RRMS errors than obtained with PDC's. Further improvements are obtained 
upon the inclusion of octapole terms. Only relatively small differences in the 
RMS and RRMS errors are found in positive and negative regions. The use of 
the multipoles provides the greatest improvement for diaminotetrazine. It has 
many lone-pairs of electrons and consequently an atomic charge model does not 
reproduce the surrounding potential very well. 

The effect of improvements in the fit of the electrostatic potential in the 
calculation of the corresponding crystal structure of these molecules was studied 
next. To accomplish this, we have modified D.E. Williams PCK/83 program 
to calculate multipole-multipole interactions including terms up to quadrupoles 
(23). The program uses Equation 44 of Nijboer and DeWette (24) to compute 
the electrostatic lattice sums; numerical tests using only real-space sums have 
supported the use of these formulas, but a formal derivation is lacking. Several 
sets of calculations were performed, which are summarized in Table VIII. Use 
of Williams original potential function parameters (18) supplemented by either 
PDC's or ACME's led only to small, but noticeable, differences in the calculated 
crystal structures. In addition, the calculated energies, which are poor estimates 
of the heat of sublimation, were also noticeably different, but the difference was 
not large. More serious from the standpoint of HE performance, however, was 
the difference between the observed and calculated densities. This quantity was 
significantly underestimated. Hydrogen-bonding was believed to be important 
in these crystal structures. This leads to unusually short hydrogen-heavy atom 
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390 COMPUTER-AIDED MOLECULAR DESIGN 

Table VII. Error analysis of electrostatic potential fit with different models. 
PDC refers to the use of potential derived charges. ME η indicates the multi-
pole expansion was carried out to n=0, charges; 1, dipoles; 2, quadrupoles; 3, 
octapoles. RMS (kj/mol) and RRMS computed as described in the text. Range 
refers to potential values (kj/mol) for which the error analyses were performed. 

Diaminotetrazine 
Range: -185.0 -4.18, -4.1É 

Npts RMS RRMS Npts 
PDC 33730 7.80e+00 3. .54e-01 21772 
ME 0 33730 1.85e+01 8, .24e-01 21772 
ME 1 33730 4.55e+00 2 .51e-01 21772 
ME 2 33730 2.23e+00 1, .33e-01 21772 
ME 3 33730 8.76e-01 6 .83e-02 21772 

TZX 
Range: -194.0 -* -4.18, -4.18 

Npts RMS RRMS Npts 
PDC 43912 3.35e+00 1. .41e-01 15384 
ME 0 43912 1.34e+01 4 .90e-01 15384 
ME 1 43912 4.47e+00 1 .60e-01 15384 
ME 2 43912 1.24e+00 6 .64e-02 15384 
ME 3 43912 1.06e+00 7 .66e-02 15384 

I -+ 4.18, 4.18 -* 161.0 
RMS Npts RMS RRMS 

2.14e+00 43230 4.86e+00 2.69e-01 
6.21e+00 43230 1.41e+01 7.27e-01 
2.02e+00 43230 3.98e+00 2.39e-01 
1.17e+00 43230 2.38e+00 1.50e-01 
6.75e-01 43230 1.34e+00 8.43e-02 

-> 4.18, 4.18 -* 296.0 
RMS Npts RMS RRMS 

1.40e+00 54956 2.54e+00 1.13e-01 
4.67e+00 54956 1.23e+01 4.61e-01 
2.10e+00 54956 3.54e+00 1.71e-01 
7.60e-01 54956 2.28e+00 8.82e-02 
6.31e-01 54956 1.43e+00 6.55e-02 

distances. To simulate this effect, the preexponential parameter of hydrogen 
atoms covalently bonded to nitrogen or oxygen were reduced by 30%. When the 
calculations were repeated with this parameter set, the crystal densities were 
reproduced much more accurately, as shown in Table VIII. These calculations 
show that molecular modeling can be used to predict the crystal densities of 
azine-N-oxides. More experimental work is required to produce greater varia
tions in molecular and crystal structures as a further test of the method. 

Conclusions 

A model for predicting the performance of explosives in the cylinder test has 
been presented. When accurate heats of formation and crystal densities are 
available, the largest errors in the predicted wall velocity at 19 mm is about 
3%. TATB is worse, but it is predicted that larger diameter cylinders will 
reduce the error. TZX is treated accurately in the model. Models for obtaining 
heats of formation and crystal densities have also been investigated. These can 
be used to estimate these quantities more accurately than before for proposed 
azine-N-oxides. 
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27. RITCHIE Computational Analysis of Azine-N-oxides 391 

Table VIII. Energy optimized lattice parameters (Â and degrees) and energy 
contributions (kj/mol) of molecular crystal structures for differing parameter 
sets. Percent errors in parenthesis. PDC and ACME's refer to the use of 
the indicated charge model with William's original parameters. P(N,0) and 
A(N,0) refer to the use of the analogous charge model with a reduced pre-
exponential factor for hydrogen on nitrogen or oxygen. E(e) is the electrostatic 
(PDC or ACME), E(d) the dispersion (R~6), and E(r) the repulsion (Aexp(-
CR,j)) components of the total energy (E(t)). ρ is the rotation angle (degrees) 
between optimized and original asymmetric unit. T(Â) is the translation of the 
optimized asymétrie unit relative to that observed. D is crystal density (g/cc). 

l,4-Diamino-2,3,5,6-tetrazine-2,5-dioxide 
Space Group P2i/a (#14), cell choice #3, Z=2.a 

Obs.a PDC P(N,0) ACME's A(N,0) 
a 6.77 6.72 (-0.7) 6.63 (-2.1) 6.81 (0.6) 6.73 (-0.6) 
b 7.35 7.55 (2.7) 7.47 (1.6) 7.55 (2.7) 7.46 (1.5) 
c 5.25 5.38 (2.5) 5.25 (-0.0) 5.38 (2.5) 5.26 (0.2) 
β 100.5 97.8 (-2.7) 98.2 (-2.3) 98.9 (-1.6) 99.3 (-1.1) 
D 1.86 1.77 (-4.8) 1.86 (0.0) 1.75 (-6.0) 1.84 (-1.5) 
Ρ 5.3 4.7 4.8 4.0 
E(e) -88.78 -97.60 -85.52 -93.92 
E(d) -118.83 -134.93 -115.20 -130.87 
E(r) 75.93 87.46 72.28 83.07 
E(t) -131.68 -145.07 -128.44 -141.72 

1,4-Diamino-2,3,5,6-tetrazine 
Space Group Amam (#63). Z=4.* 

Obs.6 PDC P(N,0) ACME's A(N,0) 
a 6.26 6.17 (-1.4) 6.14 (-1.9) 6.24 (-0.3) 6.20 (-1.0) 
b 7.84 8.89 (13.4) 8.60 (9.7) 8.45 (7.8) 8.10 (3.3) 
c 9.42 8.94 (-5.1) 8.77 (-6.9) 9.46 (0.4) 9.35 (-0.7) 
D 1.61 1.52 (-5.6) 1.61 (0.0) 1.49 (-7.4) 1.59 (-1.5) 
Τ 0.03 0.04 0.28 0.40 
E(e) -49.61 -56.88 -62.30 -78.73 
E(d) -90.29 -104.32 -88.03 -105.16 
E(r) 53.02 63.14 57.98 75.91 
E(t) -86.88 -98.06 -92.35 -107.98 

α Ryan, R. R., et al., Los Alamos National Laboratory, private communica
tion. 

6 Krieger, C ; Fischer, H.; and Neugebauer, F. Α., Acta Cryst. 1987, C43, 
1320. 
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Appendix A. Sample BKW input deck for X-0535. 
0 1 1 1 1 0 0 0 0 0 

X-0535 T Z X / F P C - 4 6 1 95/5 
6 18 19 

0.50000000000e+00 0.16000000000e+00 0.40000000000e+03 0.10909778444e+02 

0.13190000000e+01 
η c l 

0.14310000000e+01 0.27210000000e+01 
0.55875376900e-01 0.83813065351e-01 
0.17870000000e+01 0.10000000000e+03 
0.30000000000e+04 0.30000000000e+00 
h2o co2 n2 
hc l ccl4 cl2 
0.13185912061e+01 
0, 
0, 
0.10000000000e-01 
0.16906532675e-01 
0.42588420868e+02 
0.00000000000e+00 
0.47481121063e+02 
0.00000000000e+00 
0.43923400879e+02 
0.00000000000e+00 
0.29703470230e+02 
0.00000000000e+00 
0.47030899048e+02 
0.00000000000e+00 
0.45330818176e+02 
0.00000000000e+00 
0.42018161774e+02 
0.00000000000e+00 
0.26391099930e+02 
0.00000000000e+00 
0.48414981842e+02 
0.00000000000e+00 
0.42417919159e+02 
0.00000000000e+00 
0.38756858826e+02 
0.00000000000e+00 
0.42936641693e+02 
0.00000000000e+00 
0.67947479248e+02 
0 
0 
0.00000000000e+00 
0.40000709534e+02 
0.00000000000e+00 
0.55680858612e+02 
0.00000000000e+00 
0.46372489929e+02 

h2 o2 co 
hf cf4 f2 
0.10000000000e-01 

10000000000e-01 0.10000000000e-01 
10000000000e-01 0.10000000000e-01 

0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 
0 
0, 
0 
0, 

00000000000e+00 0.82403247070e+03-
51320999146e+02 0.14395629987e-01-

0, 
0, 
0, 
0, 
0 
0 

.10000000000e-01 

.10000000000e-01 

.14808050357e-01-

.13428283691e+04-

.19544629380e-01-

.74628094482e+03-

.12225010432e-01-

.11391613770e+04 

.11438289657e-01-

.11758961182e+04 

.12871470302e-01-

.10353764648e+04 

.12381610461e-01-

.11215882568e+04-

.19116619602e-01-

.12069611816e+04-

.81213722005e-02-

.79463159180e+03 

.12693859637e-01-

.12092497559e+04 

.11568469927e-01-

. 11835175781e+04 

.23640129715e-01-

.10424278564e+04-

.11874400079e-01-

.11737486572e+04-

.39482139051e-01-

.99022290039e+03 
,11445820332e-01-
.11790649414e+04-
.35636339337e-01-
.20372969055e+03-
.13958250172e-01-

0.00000000000e+00 0.95607006836e+03 
0.56752330780e+02 0.26767069474e-01-
0.00000000000e+00 0.56443182373e+03-

-0.24615189433e+00 0 . 7 1 7 9 8 5 4 9 0 3 4 e - 0 2 « 
0.00000000000e+00-0.25820437622e+03 

0.44444444776e+00 0.83093583584e+00-
-0.11353725940e+00 0.64915586263e-02-

0.83159998059e-01-0.17558999360e+00 
0.00000000000e+00 0.20000000000e+01 
0.00000000000e+00 0.00000000000e+00 
0.00000000000e+00 0.20000000000e+01 
0.00000000000e+00 0.00000000000e+00 
0.00000000000e+00 0.00000000000e+00 
0.00000000000e+00 0.00000000000e+00 
0.00000000000e+00 0.00000000000e+00 
0.00000000000e+00 0.00000000000e+00 

0.39560000000e+01 

0.25700000000e+05 

nh3 h no 
cof2 so l c 
0.19778868091e+01 
0.10000000000e-01 
0.10000000000e-01 
0.10000000000e-01 
0.14003419599e+01 

-0.26391810479e-05 
-0.57107000000e+05 
-0.37212960251e-05 
-0.93968000000e+05 
-0.23790050818e-05 
0.00000000000e+00 

-0.22012220597e-05 
0.00000000000e+00 

-0.25002170787e-05 
0.00000000000e+00 

-0.24164030492e-05 
-0.27201000000e+05 
-0.31643301099e-05 
-0.93680000000e+04 
-0.16907399640e-05 
0.51619000000e+05 

-0.24946000394e-05 
0.21477000000e+05 

-0.22266590349e-05 
0.35600000000e+04 

-0.37079569211e-05 
-0.16000000000e+05 
-0.22864060156e-05 
-0.22000000000e+05 
-0.79941555668e-05 
-0.25500000000e+05 
-0.29638829346e-05 
0.00000000000e+00 

-0.22104300115e-05 
-0.64200000000e+05 
-0.68981721597e-05 
-0.21800000000e+06 
-0.28047579690e-05 
0.00000000000e+00 

-0.51359011195e-05 
-0.15000000000e+06 
-0.12975500567e-05 
0.00000000000e+00 

-0.13938181400e+01 
-0.22670534253e+00 
0.15531000495e+00 
0.00000000000e+00 
0.10000000000e+01 
0.00000000000e+00 
0.20000000000e+01 
0.00000000000e+00 
0.00000000000e+00 
0.00000000000e+00 
0.10000000000e+01 

oh ch4 

0.41906532675e-01 
0.10000000000e-01 
0.10000000000e-01 
0.10000000000e-01 

0.19204529633e-09 
0.25000000000e+03 
0.27703001004e-09 
0.60000000000e+03 
0.17983220468e-09 
0.38000000000e+03 
0.16777609857e-09 
0.80000000000e+02 
0.19015700126e-09 
0.35000000000e+03 
0.18281809400e-09 
0.39000000000e+03 
0.21978009690e-09 
0.47600000000e+03 
0.13168230395e-09 
0.76000000000e+02 
0.18932129475e-09 
0.38600000000e+03 
0.16891550658e-09 
0.41300000000e+03 
0.24707139112e-09 
0.52800000000e+03 
0.17278070641e-09 
0.63700000000e+03 
0.61362437354e-09 
0.20000000000e+04 
0.23498719637e-09 
0.95600000000e+03 
0.16817050530e-09 
0.38900000000e+03 
0.51695342451e-09 
0.13300000000e+04 
0.21583379528e-09 
0.38700000000e+03 
0.38333131114e-09 
0.13300000000e+04 
0.93499950837e-10 
0.00000000000e+00 

0.67256969213e+00 
0.12051656842e+00 
0.12010000229e+02 
0.10000000000e+01 
0.00000000000e+00 
0.00000000000e+00 
0.00000000000e+00 
0.20000000000e+01 
0.00000000000e+00 
0.20000000000e+01 
0.00000000000e+00 
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Appendix B. Sample SIN input deck for RDX. 

3 127 124 1 
Cylinder Test 
0.20000000000E+01 0 
RDX 

100 1 1 0 
0.12700000000E-01 0 
0.10000000000E-05 0 
0.24230000000E+00 0 
O.OOOOOOOOOOOE+00-0 

-0.92042417760E+02-0 
0.54229934924E+00 0 
0.30000000000E+03 0 
0.00000000000E+00 0 
0.00000000000E+00 0, 

-0.34939402446E+01-0 
-0.96121668096E-02-0, 

0.40261694558E-02 0, 
0.39721126724E-01 0, 
0.10000000000E+00 

copper 
25 0 0 0 

0.10160000000E-01 0, 
0.10000000000E-05 0, 
0.39580000000E+00 0, 
O.OOOOOOOOOOOE+00-0, 

-0.10433967951E+04-0, 
0.11232168932E+00 0, 
0.30000000000E+03 0, 
0.05000000000E+00 0, 
0.10000000000E+01 0, 

a i r 
0002 

+5.0000 +000+0. 
+1.0 -006+3. 
+0.254 +000+1. 
+0.0 +000+8. 
-2.20373162776+001-4. 
+5.2882072 -002+1. 
+3.0 +002+1. 
+0.0 +1. 
+ 1.0 

1 0 0 1 1 0 0 0 

50000000000E+04 0.20000000000E+03 99999.0000000E+00 

25400000000E-02 
30000000000E+03 
18830000000E+01 
90418722204E+01-
22189382573E+02 
50000000000E-04 
10000000000E-05 
00000000000E+00 
00000000000E+00 
25521450345E+01 
16050449713E+01 
94796916331E-04 
30458400580E-01-

20320000000E-02 
30000000000E+03 
14970000000E+01 
31983419917E+04-
11206726387E+03 
17670000000E-04 
10000000000E-05 
00000000000E+00 
00000000000E+00 

0.20000000000E+01 
0.00000000000E+00 
0.10000000000E-01 
0.71318525243E+02 
0.67500000000E+00 
0.00000000000E+00 
0.00000000000E+00 
0.00000000000E+00 
0.00000000000E+00 
0.25510714285E+00 
0.51908426867E+00 
0.74073902496E+01-
0.10680694321E-01 

0.20000000000E+01 
0.00000000000E+00 
0.00000000000E+00 
0.55743953279E+04 
0.20000000000E+01 
0.00000000000E+00 
0.00450000000E+00 
0.00000000000E+00 
0.00000000000E+00 

0.18000000000E+01 
0.000OOO00OOOE+00 
0.00000000000E+00 

-0.12520497936E+03 
0.40000000000E+00 
0.00000000000E+00 
0.000O0OO0OO0E+O0 

4.15944771549E-01 
0.11234997249E-01 
0.65757361251E-01 

•0.49641482820E+00 
0.50000000000E+00 

0.89029999999E+01 
0.00000000000E+00 
0.00000000000E+00 

-0.36248840041E+04 
0.93000000000E-01 
0.00000000000E+00 
0.46600000000E+00 

0.00000000000E+00 

02 +000+0.000001 +000+0.000001 +001 
0 +002+0.0 +000+0.0 +000 
5 +000+0.0001 +000+0.0 +000 
17773414663+002+6.10099511390+002+9.09042692454+001 
87356368431+000+0.0 +000+0.0276 +000 
1666 -005 
0 -006+0.0 +0.0 
0 -006 
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Chapter 28 

Genetic Algorithmic Approach 
for Computer-Aided Molecular Design 

Venkat Venkatasubramanian, King Chan, and James M. Caruthers 

Laboratory for Intelligent Process Systems, School of Chemical 
Engineering, Purdue University, West Lafayette, IN 47907 

The design of new materials possessing desired physical and biological 
properties is an important endeavor for designers in the chemical, 
material and pharmaceutical industries. The traditional approach to 
molecular design involves a laborious and costly hypothesis, synthesis, 
and evaluation procedure. To alleviate the protracted design cycle, this 
paper describes an approach using genetic algorithms (GAs) for the 
molecular design process. Genetic algorithms are general purpose, 
stochastic, evolutionary search and optimization strategies based on the 
Darwinian model of natural selection. The mechanics, characteristics, 
and other issues in using GAs for molecular design are presented with 
the aid of case studies in polymer and refrigerant design. The merits 
and potential deficiencies of this approach are also discussed. 

The problem of designing new molecules with desired properties is an important and 
difficult one, encompassing the design of polymers, polymeric composites, blends, 
paints and varnishes, refrigerants, solvents, drugs, pesticides, and so on. The 
traditional approach requires the designer to hypothesize a compound, synthesize the 
material, evaluate to see if it meets the desired design targets, and to reformulate the 
design if the desired properties are not achieved (Figure 1). This is a laborious and 
expensive trial-and-error procedure. For example, it may take over one thousand 
design, synthesis and evaluation cycles before a new drug is designed. Hence, there is 
considerable incentive in developing computer-assisted approaches towards the 
automation of molecular design. 
Recently, computer-assisted procedures for designing new materials have been 
introduced to ease the protracted design, synthesis and evaluation cycle. In general, 
computer-aided molecular design requires the solution of two problems: the forward 
problem, which requires the computation of physical, chemical and biological 
properties from the molecular structure, and the inverse problem, which requires the 
identification of the appropriate molecular structure given the desired physicochemical 
properties (Figure 2). While there has been considerable attention and progress made 
towards the solution of the forward problem (such as group contribution methods, 
equation of state approaches, quantitative structure-activity relationships (QSAR) and 
so on), relatively less attention has been paid for the inverse problem (1-3). 

The inverse problem has been approached by a variety of methods. The approaches 
can be divided into five categories: random search (4), exhaustive enumeration (5-7), 
mathematical formulation (8), knowledge-based (9,10), and graphical reconstruction 
(11, 12) methods. In random search, the design candidates are randomly created from 

0097-6156/95/0589-0396$12.00/0 
© 1995 American Chemical Society 
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28. VENKATASUBRAMANIAN ET AL. Genetic Algorithmic Approach 397 

( Design Λ 
ObjectivesJ~ -| Designer | 

[Hypothetical Molecule^ 

^ Solution ^ 

Figure 1. Iterative Molecular Design Process 
Reproduced with permission from Ref. [15]. ©1994 Elsevier 

Forward Problem 

Prediction 

Chemical Structure 

IP1.P2, P 3 , . . . P N I 

Physical Properties 

Design 

Inverse Problem 

Figure 2. Components of the Molecular Design Problem 
Reproduced with permission from Ref. [15]. ©1994 Elsevier 
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398 COMPUTER-AIDED MOLECULAR DESIGN 

chemical building blocks, called base groups, and then evaluated to see if they satisfy 
the design constraints. Typically, the solution space or search space associated with 
any molecular design problem is the set of all possible combinations of the base 
groups with or without restrictions on the maximum number of base groups (i.e. the 
"design length") used to create a molecule . Given the combinatorial complexity of the 
solution space associated with C A M D (7), random search samples a very small region 
of the total design space in an ad-hoc manner and is thus not a feasible method for 
large-scale molecular design problems. Another approach is to enumerate all possible 
designs up to a maximum design length which is obtainable from the base groups. 
Again the combinatorial explosion, even if one prunes infeasible designs (6,7), makes 
this approach intractable. Mathematical programming methods consider molecular 
design as an optimization problem where the objective is to minimize the error 
between the desired target values and the values attained by the current design. The 
solutions to mixed integer nonlinear programming (MINLP) formulations are 
susceptible to local minima traps for problems with nonlinear constraints, which are 
often found in most structure-property relations. The solutions to these problems are 
also computationally very expensive, especially for highly nonlinear systems. 
Knowledge-based methods are artificial intelligence approaches which assume that 
expert rules exist for manipulating chemical structure to achieve the desired physical 
properties. However, the nonlinear structure-property relationships cannot be easily 
quantified, especially when designing for multiple design objectives. Furthermore, 
extraction of such design expertise from experts on molecular design is not easy, 
making the knowledge acquisition problem a very difficult one. Lastly, graph 
reconstruction methods solves the inverse problem of reconstructing the molecular 
graph(s) of a topological index (13) of quantitative structure-activity relationship 
(QSAR) equation. For molecular design using this approach, one must express all 
structure-property relations in terms of topological indices. This may not be 
appropriate or feasible for all properties. Furthermore, topological indices are not 
unique and there currently does not exist a general graph reconstruction method for all 
molecular indices. In addition, since one often deals with a number of design criteria 
to be satisfied and not just one or two properties, this approach may not be feasible in 
general. Thus, there exists a critical need to explore alternative strategies for 
molecular design that can circumvent these problems. 

This paper describes a new approach to computer-aided molecular design using 
Genetic Algorithms (GAs). Genetic algorithms are general purpose, stochastic, 
evolutionary search and optimization strategies based on the Darwinian model of 
natural selection. The essence of GAs lies in allowing a dynamically evolving 
population to gradually improve by competing for the best performance. The 
proficiency with which GAs are known to search noisy, discontinuous, and nonconvex 
solution spaces motivated us to examine genetic search as a viable approach for 
molecular design (14, 15). The remainder of the paper is organized in the following 
manner. First a brief overview of genetic algorithms is given. Next, the adaptation of 
GAs to molecular design, such as molecular representation, genetic operators, fitness 
functions, etc. is presented. This is followed by results from the polymer and 
refrigerant design case studies. Lastly, the summary and conclusion and the relative 
merits and potential deficiencies of the proposed approach is discussed. 

Genetic Algorithms: A Brief Introduction 

Genetic search methods have their basis in Darwinian models of natural selection and 
evolution (16). The general idea behind genetic algorithms is the evolutionary creation 
of a new population of entities from an earlier generation through certain combinations 
and changes and by passing on the fittest offsprings to the next generation. Genetic 
algorithms work by simulating two important characteristics of natural evolution. The 
first is the "survival of the fittest" idea. By this, we refer to the survival of that part of a 
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population that possesses the necessary characteristics to thrive and reproduce in a 
given environment. The second is the propagation of the attributes of the mating 
members by the recombination of genetic material and transmission to the offsprings. 
For a genetic algorithm, the environment is the set of desired solution characteristics or 
properties. The population is any set of solution candidates. The representation of the 
members of a population in the G A is usually in the form of a string, of a finite length, 
composed of binary bits {0,1} which form the building blocks of a solution. The 
genetic material of interest in a G A are the building blocks of the population members. 
Mating typically involves the random combinations of or changes in the building 
blocks of the parents to produce offsprings. The "fitness" or the ability of a population 
member to survive in the environment is determined by the closeness of its properties 
to those desired and is characterized by a non-negative value. The highly fit members 
are given a greater chance of selection for reproduction. This is called "fitness 
proportionate selection" and is achieved by the genetic algorithm by weighting the 
probability of selection of a "parent" candidate based on its fitness value. As a result, 
individuals who are more fit have a greater chance of producing offsprings and passing 
on their genetic information onto succeeding generations. The impact of this strategy is 
that the more promising regions of the solution space are quickly identified and 
sampling is increasingly focused on these regions at the expense of low performance 
regions. 

An advantage to this search technique is that it is not based on local gradient 
information and is more resistant to ill-formed solution spaces that are discontinuous or 
nonconvex. Unlike the traditional optimization methods which move from a single 
point in the solution space to the next, GAs examine and manipulate a set of potential 
solutions. The G A uses the information obtained from this set of solution candidates to 
generate the next set instead of using a single point. Consequently, this significantly 
reduces the possibility of remaining trapped in local optima in a multimodal search 
space. In creating offsprings from a given population the sequence of the building 
blocks of the highly fit members of the current population may be lost. To avoid this, a 
small percentage of the highly fit members of the current population are retained over 
to the next generation. This policy of retaining very fit members is called elitism. In 
general, this approach is ultimately expected to lead to generations that become more 
and more fit through evolution thus achieving the desired design objective. However, 
there is no guarantee that this would be achieved, which is the primary drawback of the 
genetic search. 

The process of reproduction involves the modification of the building blocks 
(genetic material) of the parents to produce offsprings. To this end, the genetic 
algorithm uses what are called genetic operators. The nature and function of the 
operators is problem and representation dependent. The transition rule for a G A 
consists of the plan of reproduction and the genetic operators. In its simplest form the 
transition rule of a G A consists of fitness proportionate reproduction and two genetic 
operators: crossover and mutation (77). The basic genetic operators as well as the ones 
developed additionally for molecular design are described in the next section. 

There is much theoretical and empirical evidence showing that GAs are effective 
in navigating through large and complex search spaces (16,18). However, there exists 
no theoretical proof guaranteeing convergence to global optimum. Additional 
discussions on G A fundamentals and applications can be found in Rawlins (19), Davis 
(20), Michalewicz (21), Koza (22), and Androulakis and Venkatasubramanian (23). A 
summary of G A applications in chemistry can be found in Hibbert (24) and Lucasius 
et al. (25). 

Genetic Algorithmic Approach to CAMD 

In our approach to C A M D , the forward problem, is solved by using the standard 
group contribution methods. This is discussed in the case study section. Genetic 
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algorithms were used for the inverse problem and is presented in this section. The 
standard genetic algorithm framework needs to be adapted for the molecular design 
problem. The modifications introduced were in the representation of molecules, 
creation of new operators to facilitate the rich chemistry of molecular interactions and 
rearrangements, and fitness functions to handle property constraints. Figure 3 shows 
the proposed overall genetic algorithm approach for C A M D . The G A loop can be 
described as steady-state reproduction with elitism. The former maintains a constant-
sized population and the later saves the best designs from the previous generation,. 
The G A is initiated randomly with feasible designs (i.e., fitness > 0) to provide 
starting points. To maintain solution diversity, the elitist policy saves only chemically 
distinct designs from the previous generation. The G A requires values for a number 
of tunable parameters, such as population size, genetic operator probability rates, and 
fitness function constants. The G A parameters are provided in the case studies. 

Molecular Structure Representation In the present system, an alphabet of chemical 
building blocks called base groups {e.g., >C<, -Η, -Ο-, >C=0, etc.} was developed as 
it is conceptually easier to use. The base groups can be elemental (consisting of single 
atoms or molecules), substructural (consisting of small combinations of molecules), or 
larger molecular units (such as a methyl group, phenyl group etc.). A design is then a 
connected list of symbols from the base group alphabet. The base groups are selected 
such that they have the capacity to produce, in general, a rich variety of molecular 
combinations that would be of potential interest. The selection of base groups is also 
influenced by the choice of the predictive method employed for property estimation. 
For example, in order to apply the group contribution methods for property prediction 
the selected groups must have all the appropriate group contribution parameters 
available.Complex molecules will require chemical knowledge-specific rules to 
construct and alter compounds to result in feasible candidates. These molecular 
structures are then represented as nested lists in Lisp. 

In the nested list representation, the first list represents all the mainchain groups and 
the sequence in which they appear. The subsequent lists correspond, in order, to the 
sidechain groups attached to each of the mainchain groups present in the first list. For 
example, CF3CHCI2 in Figure 4, the first list of two C's represents the two carbon 
mainchain groups. The subsequent list contain sidechain substituents for the 
corresponding mainchain units. 

Adapting Genetic Operators In addition to the standard genetic operators of 
mutation and 1-point crossover, we have developed new operators to facilitate the rich 
interactions among molecular groups. They are described below. 

One-Point Crossover Modification from the binary one-point crossover allows 
operations between variable length strings. This is necessary as molecule size is an 
important design variable. As a result, variable length symbol-based crossover 
involves information exchange between two parent strings at randomly generated 
positions on each molecule. The position are within the interval of 1 and length-1 of 
the respective strings. Figure 5 illustrates the one-point crossover operator. In the 
figure, the offsprings are created by crossing over the segments of the parents as 
shown by the dotted lines. 

Two-Point Crossover A shortcoming of one-point crossover is that it cannot 
combine certain combinations of features encoded on the string. For instance, 
important groups located at the endpoints of a string will always be separated by a 
one-point crossover operation. A solution to this problem is to use two-point 
crossover. This operator is like one-point crossover, except that two cut points rather 
than one are selected at random, and the groups are swapped between the two points. 
Permissible cut points are located from 2 to length-1. An illustrative example of this 
operation is shown in Figure 6. 
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Population 

Random 
Heuristic 

Calculate Fitness (F) 

• Gaussian 

• Sigmoidal 
Fitness Functions 

Record Designs 

Optimal ( F - l ) 

H igh Fitness (F is 0.99) 

Constraints Satisfied 

New Generation 

Ï 

Elitist Policy 

* 
Apply Operator 

Steady State 
Reproduction 

* 
Select Parent(s) 

Fitness 
Proportionate 

* 
Select Operator 

Probabilistic 

Figure 3. Genetic Algorithm Flowchart for C A M D 
Reproduced with permission from Ref. [15]. ©1994 Elsevier 

Ο 
j ν II 

ο c— 
- C l - F - O H 

Ο Η 
II I 

— N — — C — Ο — Ν — 

Maincliaixi: >C< 

Sidechain: - H 

Ο 

Substructure!.: "™"C 

Molecular: — C H 2 — C H 2 — — S — 

Symbolic Molecular Representation; 
H 

((C C) ((F F F) (H C l Cl))) 
C l 

F 
I I 

F — Ç — Ç—Cl 
F — 

C H 3 " 

C H 3 I 
((C6 C C 6 C6) (rùl ( C H 3 C H 3 ) nil)) 

Figure 4. Molecular Structure Representation 
Reproduced with permission from Ref. [15]. ©1994 Elsevier 
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Parent 1: Parent 2: 

r H H I η r Λ ^ I Ç H 3 ν η 

m • 

1 
Offspring 1: Offspring 2: 

Figure 5. Illustrative One-Point Crossover Operation 
Reproduced with permission from Ref. [15]. ©1994 Elsevier 

Parent 1: Parent 2: 

ΓΗ Η ' Η Η Ή hfl 

|_Η | | HJ N 

-^>-s^ g>ts - < 5>-s - K^>J-

1 
Offspring #1 

ΓΗ Η ' ' Η ΗΊ 

i è _ ^ + s - < ô > - s i - è - < H -
Ι Η fi " Η Ι Γ 

I I 

t 
Offspring #2 

Γ Η ι 

Figure 6. Illustrative Two-Point Crossover Operation 
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Blending Operator The blending operator produces one offspring from the end-
to-end connection of two parents. The motivation for this operator is to overcome the 
shortcoming of the crossover operator which is to propagate only a random (good or 
bad) characteristic of the parents (in terms of the sequence of building blocks 
transmitted) to the offspring. This essentially combines the attributes from both 
parents. This works like the insertion operator, but is more guided in the sense that it 
adds a highly fit member to another highly fit member and is not totally random like 
the insertion operator. The molecular length is increased by applying the blending 
operator. An example of the blending operation is shown in Figure 7. 

Mainchain Mutation and Sidechain Mutation Mainchain and sidechain 
mutations are analogous to bit mutations. These operations are applied to the molecule 
as each groups along the main or side chains may be replaced by a randomly selected 
group. Figure 8 shows examples of mainchain and sidechain mutation operators. 

Parent 1 : Parent 2: 

Blending 

Offspring: 

Figure 7. An Example of a Blending Operator 
Reproduced with permission from Ref. [15]. ©1994 Elsevier 

Parent: 

" H R î : 

ι ι 

Offspring: 

Parent: Offspring: 

Figure 8. Mainchain and Sidechain Mutation Operators 
Reproduced with permission from Ref. [15]. ©1994 Elsevier 
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404 COMPUTER-AIDED MOLECULAR DESIGN 

Mainchain Insertion and Deletion Operators The insertion operator randomly 
inserts a group at a single mainchain location. Similarly, the deletion operator 
randomly removes a group along the mainchain. 

Hop Operator The hop operator moves ('hops') a randomly selected group on the 
mainchain to a randomly selected location on the mainchain. This facilitates small 
rearrangements in the ordering of the groups which may increase the fitness. Figure 9 
illustrates the mainchain insertion, deletion, and hop operators. 

Parent: Offspring: 

Figure 9. Insertion, Deletion, and Hop Operators 

Reproductive Plan To evaluate how well a candidate molecule satisfies the desired 
target properties, one needs a fitness function that returns a single numerical "fitness" 
or "measure of merit". The genetic framework searches for design candidates by 
evaluating how close (or far) a given candidate molecule's macroscopic properties are 
from the desired target. Thus, a measure of fitness one developes should take as its 
input the desired target properties, the candidate's properties, the desired level of 
tolerance in meeting the target specifications, and some tuning parameters. And the 
output from this fitness faction should range smoothly from 0 to 1 such that candidates 
whose properties are far from the target have a fitness close to 0 (and are thus 
penalized) and those candidates closer to the target have a fitness closer to 1 ( and are 
thus encouraged). The tuning parameter is needed to adjust how strongly one would 
like the function to penalize (or encourage) deviations from the target. In addition, one 
would like this function to be as simple as possible. A Gaussian-like function, satisfies 
these requirements and was used in our approach and is given below: 

F . J J j ^ S i O (1) 
\ L*-l (Pimax-PiminT\) 

where Pi is the i m property value, Pj is the average of the maximum and minimum 
acceptable property values, Pi,max and Pi,min> respectively, which are used to 
normalize the property values. The index i ranges over all the property constraints that 
are applied. Thus, the fitness function, F, is a measure of the distance of the property 
values of the current candidate molecule from the desired values. The function F 
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ranges from 0 to 1, 1 being the target molecule's fitness. The parameter α is the 
fitness decay rate that determines how the fitness values fall off as the candidates 
move away from the center of the property constraints. Larger values of α will make 
the fitness fall off more rapidly as the candidate's properties deviate from the target 
and thus will enforce tighter constraints. A smaller value of α will be more tolerant of 
such deviations. 

Molecular Design Case Studies 

Two molecular design case studies using genetic algorithms are presented in this 
paper. These problems have been investigated before by Joback and Stephanopoulos 
(6) using their heuristic-guided enumeration approach. We investigated these case 
studies using our genetic algorithm approach for comparison. The first case study 
reported here is the same as the one discussed in Venkatasubramanian et. al (15), but 
this paper includes some additional results on the near optimal designs. The second 
study is the problem of designing refrigerant molecules subject to target property 
constraints. 

Case Study 1 The aim of this case study was to investigate the ability of the G A 
based C A M D framework to solve a practical polymer design problem, compare with 
the previous attempt of Joback and Stephanopoulos and benchmark the efficiency of 
the genetic search algorithm against random search. This study also explores the 
ability of the G A based approach to produce near optimal design alternatives. The 
problem in this case study is to design polymeric materials for semiconductor 
encapsulates so that they may be functional under various environmental conditions. 
In the investigations by Joback and Stephanopoulos, polymers were designed subject 
to constraints that had either a lower bound or an upper bound. The properties 
considered were glass transition temperature, volume resistivity, thermal conductivity, 
and permeability to oxygen. The polymer building block groups employed by Joback 
are listed in Table I. The constraints on the properties are as given in Table Π. Joback 
reported that there were about 18,000 feasible molecules which satisfy the constraints. 

Table I. Base Groups for Polymer Design Case Study I 
Reproduced with permission from Ref. 15. «1994 Elsevier 

-CH2- -CH(CH3)- -CH(C6H5)-

-C(CH 3 )2- -C(CH 3 ) (C6H 5 ) 

-^>-@- - © - C H 2 - - C H 2 - © - C H 2 -

- © - C H 2 - © - -0-
-O-C-

S 
-O-C-O- -C-NH- O-C-NH-

8 ΰ 
-CHF- -CF2- -CHC1-
-CC12- -CFC1-

Since the constraints were not bounded at both the upper and lower ends, this is a 
relatively easier design problem and the genetic search was able to discover the 
desired polymers quite easily and quickly as reported elsewhere(75,). One would 
expect the design problem to become more difficult if the constraints were to be 
tightened by providing both a lower bound and an upper bound for each constraint. 
The results of this more difficult test are discussed in this study. 
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406 COMPUTER-AIDED MOLECULAR DESIGN 

Table II. Physical Property Constraints for the Polymer Design Case Study 1 

Glass Transition Temperature 
Volume Resistivity 
Thermal Conductivity 
Permeability to Oxygen 

Tg>400K 
R > 1x1016 ohm-cm 
L > 1.6x10-7 W / ( m - K ) 
P(Q2) < 1.0 cc-mil/100 in2/day/atm 

In this investigation, Joback's design study was revisited with tighter constraints. 
Six polymers of different length and complexity from Joback's list were chosen as the 
design targets by submitting their properties as the target values. This time, however, 
the constraints were tightened by specifying that the successful candidate molecule 
should have its property values within ±0.5% of the target properties. If the genetic 
search were to be successful, it should discover all the six molecules, one at a time, by 
combining the groups shown in Table I. 

Table III. Parameters for the Design Case Study 1 

Genetic Algorithm Parameters 
Population size 100 

Number of generations 500 
Maximum Design Length 1-7 

Fitness Gain (a) 0.001 
Total Runs per Case Study 10, 25 

Elitist Policy Keep Best 10% 

Genetic Operator Probabilities 
Crossover 0.20 

Mainchain Mutation 0.20 
Sidechain Mutation 0.20 

Insertion 0.00 
Deletion 0.10 
Blending 0.10 

Hop 0.20 

The steady state reproduction with elitism model (Figure 3) was employed. 
Polymer design lengths varied from 1 to 7 to coincide with Joback's study. For 
statistical significance, independent G A runs were repeated ten times with runs 
terminating after 500 generations. In each run, the starting population consisted of 
random polymers made of groups from Table I. The parameters for the design case 
studies are listed in Table ΠΙ above. 

Results and Discussion for Case Study 1 The results are shown in Table IV. As is 
evident from the success rate, the genetic search did quite well in general. A l l six 
molecules were discovered by the genetic search, though some more often and quickly 
than others. For example, molecule #5 was found fairly quickly (« 40 generations on 
an average) and also was found in every run. On the other hand, some other polymer 
like #1 took much longer («113 generations on an average) and also with a smaller 
success rate (found only in 6 out of thelO runs). Typically, a molecule that is longer 
and has more diversity of groups in its structure takes a longer time to discover. Other 
factors such as how close the alternative solutions are to the target molecule also 
matter as the genetic search could get stuck in such a local optima. 
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Table IV. Results for Polymer Design Case Stud} 

Target Polymer Target 
Length 

Avg. Gen. 
No. when 
1st soin, 
was found 

Avg. No. 
of soins, at 
the end of 
theGA 
search 

Random 
Search 
Success 
Rate 

GA 
Search 
Success 
Rate 

1. (-CHCH3-) (-CF2-) (-CONH-) 4 113.0 13.3 60% 60% 

2. (-CHC1-) (-CONH-) 2(-CH2-®-CH2-) 
( - ® - ® - ) 

5 68.8 12.0 20% 50% 

3. (-CH2-) (-CHF-) 3(-®-CH2-®-) 5 149.7 12.2 0% 90% 

4. (-0-) (-CHF-) 2 ( -®-®-) (-©-CH2-®-) 5 110.0 12.3 30% 100% 

5. 2(-CCH3-®) 2(-CH-®) 2(-OCONH-) 6 40.5 12.6 0% 100% 

6. (-CH2-) (-CHF-) (-CCH3-®-) ( - ® - ® - ) 
(-OCONH-) 

5 163.0 12.7 20% 60% 

Near Optimal Solutions Whenever the genetic search failed to discover the target 
polymer, it always came up with several solution structures that had very high fitness 
values (typically 0.95 or higher). Many of these alternatives were structurally quite 
similar to the target. As an example, Table V shows such near-optimal design 
candidates that were generated for target polymers #1, #2 and #6 for which the G A 
had low success rates. 

Table V. Near-Optimal Design Candidates from Case Study 1 
»» ρ ^ κ „ ~ » ~ v ^ . p ^ c * P ~ I . i L i . . * ; ~ 1 ——" ~ T " Target Polymers and Next Best Polymer Solutions 

Total Generations = 500 Relative % 
Error Fitness 

Target Polymer: # 1 
(-CHCH3 -CF2-CONH-^>-^>-) (0 0 0 0) 1.0 

3 Next Best Solutions; 
(-CCH 3 ̂ @ - ) ( C H -^-)(-CFCl-)(-OCONH) (3.33,0.064, 2.44,-2.76) 0.9939 
(-CC12-) (-®>-)(-OCONH-)( - © - ® - ) ( - C H C l - ) 
(-CHCH3-) (3.99,0.694,-1.73,-3.66) 0.9919 
( -CFCl - ) ( -CCl 2 - ) (CH^®-) ( -COO-) (CH^®-) 

(3.99,0.694,-1.73,-3.66) 

(-OCONH ) ( - ^ " ® - ) (-3.15, 6.21,3.90,-1.59) 0.9837 

Target Polymer; #2 
(-CHC1-) (-CONH-) 2 ( - C H 2 - © - C H 2 - ) ( - © H © - ) (0 0 0 0) 1.0 

3 Next Best Solutions; 
( -®-) ( -OCONH-)( -CFCl- ) ( - © - ® - ) ( - C F 2 ) ( C H ^ ® " ) (2.07, 1.71,-2.74,-1.11) 0.9960 

( - © - C H 2 - ) ( - @ - C H 2 - < © - ) ( - C F C l - ) 2 ( - © - © - ) 
(-COO-) (5.55, -0.77, 1.80,-0.32) 0.9914 
( - C O N H - ) ( - @ ~ C H 2 - @ - ) ( - ® - C H 2 - ) ( - C F C l - ) 

( -©-0-)(-CF 2)(COO)(CONH-) (-2.55,-5.04,-1.92,-0.32) 0.9912 
Target Polymer; #G 

(-CH2-) (-CHF-) (-CCH3-Œ) ( - < 5 > - ® - ) (-OCONH-) (0 0 0 0) 1.0 
3 Next Best Solutions; 

( "-©•- ) ( - © - @ ^ ) ( C H - ® - ) ( -<§Η(-ο-) (-1.07,-0.80,4.16,-5.90) 0.9867 
(-OCONH) 
( - © M ^ - ) ( - ^ - ) ( - © - © - ) ( . C C H 3 - © - ) ( - C F C l - ) 
(-CONH-) (1.46, 4.70, 2.91,4.97) 0.9858 

(-CHF-)2( - © - © - ) ( C H " ^ - ) ( - ® - ) ( - C O N H - ) 
(-CHC1-) (-3.08, 3.98, 3.49, 5.25) 0.9839 

A l l design alternative have high fitness values exceeding 0.98. The relative percent 
error for each property ranged from about -6% to 6%. Given that the group 
contribution methods are not very accurate and may have errors of the order of ±5%, it 
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is important to develop a group of alternate molecules that are nearly as good as the 
target. In addition, these alternative solutions may be more acceptable from the point 
of view of synthesis and cost effectiveness. It is important to note that this ability of 
the genetic design framework to provide a collection of possible alternatives that are 
of high fitness is a very useful design feature. 

Comparison with Random Search For the purposes of comparison, a random search 
technique was implemented for the case study with doubly bounded design 
constraints. Analogous to the genetic algorithm case study, 100 polymers per 
generation were generated for 500 generations for a total of 50,000 design candidates 
in a single run. This was repeated for 10 runs for each target molecule. The random 
search procedure consisted of randomly selecting a length of 1 through 7 groups and 
then randomly filling in the mainchain elements with groups from Table I. On an 
average, one can expect 7,143 candidate solutions to be generated for each length 
(50,000-1/7). The total number of design candidates associated with exhaustive 
enumeration, is given by, C(m+L-1,L) = (m+L-l)!/L!(m-l)!, where m is the number 
of mainchain groups and L is the chain length (15). Consequently, of the six target 
polymers consisting of 4, 5, and 6 base groups, there are, 8855, 42504, and 177100 
total designs for each design length, respectively. Thus, for targets polymers of length 
4, 5, and 6 the success rates are 81% (7,143/8,855), 17% (7,143/42,504), and 4% 
(7,143/177,100), respectively. The success rate, however, drops off to nearly zero for 
designs which employ many base groups and for longer molecular designs. For 
example, increasing the maximum length of the design target to 8 decreases the 
probability of success to 0.28% (50,000 · (1/8) / 2.22x10°). 

The results from the random search are given in Table IV. As expected, the 
random search performed well on target polymer #1 (60% success rate) which is 
shorter with a length of 4 base groups and compares favorably with the genetic search. 
However, the average success rate for the target polymers of length 5 base groups 
(#2,#3,#4 and #6) is lower at 30%. For polymers #3 and #5, which are of length 6, 
the random search performed poorly (0% success rate). In addition, random search for 
the 6 target designs is only able to locate on the average, 2.5 solutions with a fitness 
greater than or equal to 0.9. This is in contrast to the genetic search which is able to 
routinely locate dozens of near optimal solutions. 

Case Study 2 : Refrigerant Design 

Joback and Stephanopoulos (6) also reported a replacement refrigerant molecular 
design case study subjected to target property constraints using their heuristic-
enumeration methodology. The present case study solves the same problem with the 
G A approach. The target property constraints as specified by Joback and 
Stephanopoulos are given below and summarized in Table VI. The constraints on the 
property values are imposed to ensure efficient operating conditions for the 
refrigeration process (6). 

Table VI. Target Property Constraints for the Refrigerant Design Problem 

Property Temperature Constraint 

1· Pv-low (Lowest Vapor Pressure) 
2. Pv-high (Highest Vapor Pressure) 
3. Δ Η ν (Heat of Vaporization) 
4. C p (Heat Capacity) 

272.05K 
316.45K 
272.05K 
294.25K 

> 1.4 bar 
< 14 bar 
> 18.4kJ/g-mol 
< 32.2 cal/g-mol 

The current work also examines designing refrigerants which offer high thermal 
efficiency as well as satisfying property constraints. An ideal vapor-compression 
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refrigeration system was used since it takes into account the thermodynamic properties 
of the refrigerant. The thermal efficiency of the refrigerant was calculated based on its 
"Coefficient Of Performance" (COP) in an ideal vapor compression cycle and the 
Carnot's cycle which is the performance limit of any refrigeration system. The basic 
refrigeration cycle and the calculation of thermal efficiency are as given in Figures 10a 
and 10b. For the properties themselves, group contribution property estimation 
procedures of Joback and Reid (3) and Joback (7) were employed. The fundamental 
units or base groups for constructing a refrigerant molecule is a variant and subset of 
those used in Joback's case study. The current G A does not consider ring compounds as 
many are toxic and thus environmentally unfavorable. The refrigerant design 
mainchain and sidechain groups are illustrated in Table VII. Furthermore, the base 
groups are redefined such that all group combinations result in feasible compounds. 
This removes the enumeration step to determine chemically feasible designs as is 
required by Joback's method. 

1AA 

Work 

t \ t 

Figure 10 (a). A Typical Refrigeration Cycle 

Z3 
•S3 
CD 

Entropy 

h2 - h i = Enthalpy difference across compressor 
h i - h4 = Enthalpy difference across evaporator 
COP = (h i -h4) / (h2-h i ) 
Feff (thermal efficiency) = COP ideal / COP carnot 

Figure 10 (b). Thermodynamics of an Ideal Vapor Compression Cycle 
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The base groups are divided into 3 parts: i) mainchain, ii) sidechain, and iii) endgroups 
for cases when Lengths =1 and ^2 . This division is necessary since some 
mainchaingroups can act only as endgroups or as non-endgroups. Moreover, the 
number of sidechains for a particular mainchain depend on the chain length as well as 
group location. This imposes certain restrictions on the genetic operators that were used 
for the polymer design case study in terms of creating feasible offsprings. These 
operators are discussed in the next section. 

Table VII . Refrigerant Design Base Groups 
• 10 Mainchain Groups, 13 Sidechain Groups 

Mainchain 
Groups 

Sidechain no. 
for 

non-Endgroup 

Sidechain no. 
for 

Endgroup, 
Length-1 

Sidechain no. 
for 

Endgroup, 
Lenrth^2 

>c< 2 4 3 

>c=c< 2 4 3 

>c=c=c< 2 4 3 

- C B C - 0 2 1 

>N- 1 3 1 

-o- 0 - -
-s- 0 - -
ο 
II -c- 0 - -
o 

>c=« - 2 1 

ο 
1 -c-o- 0 2 1 

Sidechain Grouos 

- H - C R A - F -CI - F 

-Br -I - O H - C N - S H 

- N H * - N 0 2 - C O O H 

Modified Genetic Operators The previous case study used a set of base groups so 
chosen that any combination of the base groups would be feasible and the sidechain 
requirements for the all base groups on the main chain were the same. This eliminated 
the possibility of the creation of infeasible molecules during the genetic search. In this 
case study, however, the base group set consists of certain members with restrictions 
on the positions in which they can appear in a molecule as shown in Table VII. This 
means that chemistry imposes restrictions on the number of sidechains that a base 
group can have depending upon its position in the mainchain. Thus infeasible designs 
can be created by the random combination of the base groups. To overcome this 
problem, some of the genetic operators were modified to include "repair" operators 
which maintain chemical feasibility by correcting the infeasible designs during the 
genetic search. Another approach to this problem is to use chemical knowledge-based 
operators that use appropriate molecular construction and alteration rules that do not 
create infeasible molecules. This technique is more efficient when complex designs 
with multiple branch points are considered. In this case study, however, the simpler 
repair operators were employed. The following operators were modified : 

• Blending: To ensure chemical feasibility, randomly remove one sidechain from each 
refrigerant endgroup to be blended. 
• Mainchain Mutation: This operator is as defined previously but replaces endgroups 
and non-endgroups correspondingly. 
• Insertion: If insertion is at an endgroup position this operator randomly removes the 
required number of sidechains from former endgroup. 
• Deletion: If the group being deleted is an endgroup and the adjacent group is a 
suitable endgroup this operator adds the required number of sidechains to the adjacent 
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28. VENKATASUBRAMANIAN ET AL. Genetic Algorithmic Approach 411 

group. When the adjacent group is not a suitable endgroup the deletion operation (as 
was defined for Case Study 1) is performed again. 

Fitness Function for Refrigerant Design The fitness of a design candidate is 
expressed as the average of the individual constrained fitness values. The property 
fitness function brackets off a lower and upper bound in which no constraints are 
violated and the fitness =1. The properties which fall outside these bounds have their 
fitness reduced by a "sigmoidal" shaped fitness function. The fitness functions 
employed for the refrigerant design study are given below: 

1, if Pr,min£Pi£Pr,max 
Fi = 

Sigi, if Pr,min > Pi or Pi < Pr,max 

Sigi = exp I-ceil 

(Pj'Pj.min ) j 

(P -P · ) 2 / A r r . m a x r r , m i n / ΛΙ 

prop -
_ LlF, 

(2) 

(3) 

(4) 

were Pr,min and Pr,max are the absolute minimum and maximum property values to 
design for. Their difference also normalizes the property values to remove possible 
bias towards any single property. Ρί,πύη is the minimum property value which yields a 
fitness of 1. The function F ranges from 0 to 1, 1 when Pi is within Pr,min and Pr,max-
The fitness decay rate is controlled by αϊ. For example, a i for a Cp value greater than 
32.3 is 100 since it gives a rapid decay in fitness for constraint violations. On the other 
hand, a i for Cp values less than Pcp,min is 10 which allows a more gradual decay of 
fitness. The parameters for equations 3 and 4 are listed in Table VIE. 

The thermal efficiency fitness is defined as the ratio of the coefficient of 
performance (COP) of the ideal vapor-compression cycle vs. the COP of the Carnot 
cycle (F e ff =COPvap-comp/COPCarnot)- For thermal efficiency calculations, the 
refrigeration system must maintain an environment at 260K for available cooling water 
at 295K. The refrigeration coils and condenser are of sufficient size that a 5K approach 
can be realized. 

Table VIII. Fitness Function Design Constants 
Property pi,min Pr,min Pr,max ai,rmin *i,rmax 

1· Pv-low 1.4 0 10.0 10 100 
2. Pv-high 5.0 0 20.0 100 10 
3. Δ Η ν 18.4 0 60.0 10 100 
4. C p 17.0 0 40.0 100 10 

More detailed thermodynamic theory on the refrigeration process is described in 
Cerepnalkovski (26). The overall fitness when considering both property and thermal 
efficiency constraints is given by the linear combination of Fp r 0 p and F eff. 

Ftotal = PlFprop + P2F eff (5) 

where, βΐ and β2 are the weight factors for Fprop and Feff, respectively. The sum of 
βΐ and β2 is unity so that Ftotal ranges from 0 to 1. Equal weight is given to Fprop and 
Feff as both βΐ and β2 are equal to 0.50. 

The genetic search is required to design for refrigerants subjected to property and 
thermal efficiency constraints. The population size is 100, the elitist policy keeps 10% 
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412 COMPUTER-AIDED MOLECULAR DESIGN 

of the previous best population members. The initial population consist of refrigerants 
with random mainchain and sidechain groups and random design lengths of 1 to 7. For 
statistical significance, results were compiled after 25 G A runs of 500 generations 
each. The genetic operator probability values are as follows: i) crossover = 0.30, ii) 
mainchain mutation = 0.20, iii) sidechain mutation = 0.20, iv) insertion = 0.10, v) 
deletion = 0.10, vi) blend = 0.10, and vii) hop = 0.00. The hop operator was not 
required as the order of the base groups does not affect the predicted physical 
properties for this case study. 

Results and Discussion for Case Study 2 

The G A approach found 19 molecules that satisfied all property constraints. 15 of 19 
design candidates had efficiency fitness values of 0.6 to 0.7. The other four were 
between 0.7 and 0.8. Table IX provides an illustrative example of designs which satisfy 
all property constraints and have high thermal efficiencies. 

Table IX. Refrigerant Design Results for Property and 

Refrigerant 
Molecule Pv-low Pv-high ΔΗγ Cp Feff 
l.H3C-CH=C=0 1.51 6.67 27.77 28.97 .820 
2.CH3"C=0-CH3 1.73 7.34 27.14 30.17 .818 
3.H3C-CF=C=0 1.57 6.97 26.96 31.39 .789 
4.FH2CCH=C=0 1.58 7.12 26.88 31.83 .774 

5. HCSCCH3 1.69 6.35 21.44 24.18 .690 

6. CH3CI 1.61 6.25 21.58 20.10 .663 
7. H3C=C=CH3 1.55 5.97 20.85 25.03 .657 
8. CH2FCI 1.67 6.66 20.71 23.00 .630 
9. H3C-CH3 2.74 9.55 18.67 22.58 .622 
10. H3C-N-FCH3 1.83 7.33 20.42 30.15 .610 

Table X. Illustrative Near-Optimal Refrigerants for Property 
and Thermal Efficiency Constraints 

Refrigerant Molecule Pvp 
(272.05) 

Pvp 
(316.45) 

ΔΗγ 
(272.05) 

C p 

(294.25) 
Property/ 
Thermal 

Eff. Fitness 

1. H2C=CHCH3 1.33 5.24 21.24 25.47 .999/.652 

2. CF 2 (CH 3 )2 1.40 5.51 18.92 32.53 .993/.616 

3. CH3FHC-CH3 1.23 5.01 20.80 30.65 .993/.616 

4. H3C-O-CH3 1.20 5.04 22.23 26.85 .990/.657 

5. H3C-CH2-CH3 Ul 4.77 22.07 28.30 .987/.666 

6. FCIN-CH3 1.03 4.66 23.41 27.77 .966/.660 

7. C=C=0"NF2 2.62 11.56 24.96 33.88 .960/.713 

8. HC=C-C=0-C=CH J2 3.02 33.14 33.72 .817/.914 

9. H3C-0-C=0-CH3 M 3.59 31.20 34.72 .803 / .823 

10. H3C-(C=0)2"CH3 .987 5.29 36.19 38.10 .714/.963 
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Refrigerants molecules # 6,8 and 9 in Table IX are used in current practice. The G A 
was able to identify the correct refrigerant molecule length as no designs exceeded 
three base groups even though longer designs were allowed. Refrigerant designs with 
efficiency fitness values over 0.70 had the -C=0- group in common. Since the 
program does not consider cost, stability, toxicity or flammability constraints, etc., the 
proposed designs must be screened further for these properties. However, such 
additional constraints can be easily integrated into the genetic search. Furthermore, the 
G A also found numerous near-optimal solutions with high property and efficiency 
fitness values (71 refrigerants with Ftot ^ 0.80). An illustrative set is shown in Table X . 
The values shown in italics and underlined in Table X are the ones that are out of their 
specified bounds indicated in Table VI. 

Summary and Conclusions 

The complexity of the molecular design problem requires the use of computer-assisted 
design procedures. However, the current C A M D approaches such as exhaustive 
enumeration and heuristics-guided enumeration suffer from the problem of 
combinatorial complexity of dealing with millions of possible candidates for large, 
complex molecules. In the knowledge-based approach, acquisition of appropriate 
heuristic knowledge is a serious problem. While the MINLP formalism has a certain 
appeal due to its rigorous mathematical foundation, it suffers from local minima traps. 

In contrast, the genetic algorithm framework offers a number of advantages: it is a 
multiple point search technique that examines a set of solutions and not just one 
solution- this and the stochastic nature of the algorithm helps the search to escape 
local minima traps; it is not derivative-based, thus avoiding the difficulties faced by 
math programming techniques in this respect; it is relatively easy to express the rich 
and complex chemistry of molecules; one can integrate whatever heuristic knowledge 
one might have about the problem quite easily into the genetic framework to speed up 
the design process-- for instance, instead of starting the initial population at random, 
the designer can start with structures that are good guesses based on his or her 
experience; it provides a set of alternate solutions and not just one. This would be 
particularly useful for the design of complex molecules where the forward problem 
results may not be completely reliable. 

This paper described the various issues involved in the application of the genetic 
algorithm approach C A M D with the aid of two case studies from polymer and 
refrigerant design. The genetic design approach was found to be quite successful and 
it fared much better than the random search. In addition, the genetic search was able to 
identify several near optimal solutions. 

On the down side, the proposed approach suffers from two main drawbacks. 
One is the heuristic nature of the search and that there is no guarantee of finding the 
best solution. But then, this criticism would be applicable to the other heuristic 
approaches mentioned above as well. Even in the MINLP approach, there is no 
guarantee of a global optimum solution. The other drawback is that the selection of the 
parameter values would require some experimentation. 

While the results from this study are quite promising, considerable further research 
needs to be carried out to address issues such as parameter selection, sensitivity, 
algorithm convergence, parameter scheduling, incorporation of higher-level 
knowledge and related constraints, representing more complex entities like 
composites and so on. Despite its main drawback as a heuristic procedure that has no 
convergence guarantees, it appears that this approach opens up a new avenue of 
possibilities in rational approaches to molecular design that could have a significant 
impact on a wide variety of molecular design problems. 
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These color plates are for Chapter 12. 

Color Plate 1. EBI binding site model. The white solvent accessible surface 
defines the binding site for lanosterol. 

Color Plate 2. Systhane docked in EBI binding site model. The ligand (red) 
is rendered as van der Waals spheres and fits easily within the proposed 
binding site. 
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These color plates are for Chapter 12. 

Color Plate 3. 3-Pyridyl analog of Systhane (yellow) docked in binding site 
(fit is poor). 

Color Plate 4. 3-Pyridyl analog of Systhane without the "spacer" methylene 
(blue) docked in binding site (fit is excellent). 
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This color plate is for Chapter 15. 

Plate 5. Molecular electrostatic potential (MEP) distribution (±10 
kcal/mol) of the compounds of Figure 1. A. PPG-1013 B. UCC-C4243 
C. RH-0978 D. FMC-14 Ε. AH-2.430 F. Oxadiazon G. F-6278 H . TNPP-
ethyl I. M&B 39279 J. LS 82-556. Blue regions = negative MEP; Red 
regions = positive MEP. Atom color coding: green, carbon; white, 
hydrogen; blue, nitrogen; red, oxygen; pink, chlorine; yellow, 
fluorine; blue-gray, sulfur; and bromine. 

Continued on next page 
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Plate 5. Continued. 
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These color plates are for Chapter 23. 

Color Plate 8. pAA on the positive 0 0 1 CaC0 3 surface, before 
molecular dynamics. 

Color Plate 9. pAA on the positive 0 0 1 CaC0 3 surface, after 10 ps of 
molecular dynamics. 
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These color plates are for Chapter 23. 

Color Plate 10. ρ Asp on the positive 0 0 1 CaC0 3 surface, before 
molecular dynamics. 

Color Plate 11. ρ Asp on the positive 0 0 1 C a C 0 3 surface, after 1000 ps 
of molecular dynamics. 
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These color plates are for Chapter 23. 

Color Plate 12. pAA + 7 C a + 2 ions on the positive 1 0 -2 C a C 0 3 surface, 
before molecular dynamics. 

Color Plate 13. pAA + 7 Ca+2 ions on the positive 1 0 -2 C a C 0 3 surface, 
after 1000 ps of molecular dynamics. 
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These color plates are for Chapter 23. 

Color Plate 14. ρ Asp + 7 C a + 2 ions on the positive 1 0 -2 CaC0 3 surface, 
before molecular dynamics. 

Color Plate 15. pAsp + 7 C a + 2 ions on the positive 1 0 -2 C a C 0 3 surface, 
after 1000 ps of molecular dynamics. 
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Computer-aided molecular design— 
Continued 

tautomeric equilibria effect on 
hydrophobicity, 292-301 

techniques, 3-5 
trends and prospects, 8-10 
use of toxicology, 236-248 
valence-bond charge-transfer theory for 

nonlinear optical properties of 
organic materials, 341-358 
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Computer simulation, polyelectrolyte 

adsorption on mineral surfaces, 316-324 
Concerted computational approach, 

structure-activity relationships of 
amiloride analogues, 51-62 

Conformational analysis 
amide-modified backbones in antisense 

oligodeoxynucleotides, 118-121 
testing of pharmacophore hypothesis on 

amiloride analogues, 59,60/ 
Conformational search, description, 4 
Construction of ligands, de novo design, 

64-79 
Correspondence factor analysis, 

chemoreception, 268,271,272/ 
Corrosion problems, application of 

computational chemistry, 359-360 
Cr (100) surfaces, nitriding process, 

359-376 

Crystal structures, azine N-oxides, 387-391 
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D B M A K E R , generation of 

three-dimensional databases, 71-72 
De novo design 

highly diverse structures complementary 
to enzyme binding sites, 82-96 

ligands, 65-79 
Density functional theory, use in 

nitriding process studies, 363 
Detergent simulation, example of 

chemical computation, 2 
Developmental toxicity, distribution of 

scores among chemical classes, 238-240 

1,4-Diamino-2,3,5,6-tetrazine 2,5-dioxide, 
computational analysis, 380-395 

β-Dicarbonyl solutes, stabilization 
of tautomers by internal hydrogen 
bonds, 294,295/ 

Diethyl malonate, stabilization of 
tautomers by internal hydrogen 
bonds, 294,295f 

Diffusion 
mechanism, 128 
molecular modeling of organic molecule 

behavior in zeolites, 335,337 
5,6-Dihydro-4//-1,3,4-oxadiazines 

as octopaminergic pesticides, 184-194 
molecular modeling, 184-190* 
octopaminergic action, 193,194r 
pesticidal properties, 189,192-193 
synthesis, 189,191/ 

Direct drug design techniques, 65 
Dried fruit beetle 
bioassay activity, 197,199,206r 
pheromone components, 197,198/ 

Drug design 
need to consider metabolism, 98-99 
strategies for antihypertensive agents, 

15-16 
Drug diffusion in biomembranes, 127-136 
Dynamical description of structures, 

application of computer-aided 
molecular design, 6 
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Editing, automated procedures, 72 
Effective solute hydrogen donor strength, 

estimation, 296,298-299 
Electronic attribute quantification 

electrotopological state value, 240-242 
Electrostatic potential function, 319 
Electrotopological state value, 241-242 
Energetic materials, computational 

analysis of azine N-oxides, 378-395 
Energetic model(s), 3-5 
Energy 

calculation for given geometry, 4 
effect of external electric field, 341 
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Enzyme binding sites, de novo design of 
complementary highly diverse 
structures, 82-96 

Ergosterol biosynthesis inhibitor 
fungicide design, 171-181 

advantages, 180 
binding site, 171-173 
experimental objective, 171 
iron binding, 173-174 
mode of action, 171,172/ 
model testing, 174-178 
new inhibitor design, 178-180 

Ethyl acetoacetate, stabilization of 
tautomers by internal H bonds, 294 

E V A L , function, 84 
Experimental design in organic synthesis 

generation using S Y B Y L M A C R O , 
232,234 

monovariation, 226-228 
multivariate sampling of structural 

space, 229 
objective, 225 
procedure, 229-233 
quadratic response models, 228-229 

Explosives, computational analysis of 
azine ΛΓ-oxides as energetic 
materials, 378-395 

Eye test, rabbit, 251-265 

F 

Fe (100) surfaces, nitriding process, 
359-376 

First principles prediction of solvent 
effect, valence-bond charge-transfer 
theory for nonlinear optical properties 
of organic materials, 356-358 

Fitness proportionate selection, 399 
Force-field methods, use of computer-

aided molecular design, 8-9 
FOUNDATION 

fragment generation, 72 
three-dimensional search query 

generation, 71 
Fragments, generation, 72 

Free energy of binding, definition, 40 
Free energy perturbation calculations, 

description, 36 
Fungicides, design of ergosterol 

biosynthesis inhibitors, 171-181 

GASSER for primary screen design for 
antirhinovirus agents 

advantages, 140 
analytical procedure, 142,154 
compound selection, 141-150 
genetic algorithm, 141-142 
human rhinovirus serotypes, 140,143* 
number of solutions provided, 145,153 
problem with number of viruses, 140 
selection criteria, 153 
serotype selection, 145,150-152 

GENESIS, description, 141-142 
Genetic algorithm(s) 
advantage, 140,399 
concept, 398-399 
description, 398 
design of primary screen for 

antirhinovirus agents, 140-154 
genetic operators, 399 
use for computer-aided molecular 

design, 399-413 
Genetic algorithmic approach to 

computer-aided molecular design 
adaptation of genetic operators, 400-404 
advantages, 413 
case studies, 405-413 
flow chart, 399-401/ 
molecular structure representation, 

400,401/ 
reproductive plan, 404-405 

GRIDBOX, generation of binding site 
grid map, 84 

GROWMIN, function, 84,86 
GrowMol, 83-96 

application, 88,90-91 
binding modes exhibited by structures, 

91,92/ 
description, 83 
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GrowMol—Continued 
evaluation and ranking of structures, 

88,89f 
generation of molecular structures, 86-88 
occupation of thermolysin binding 

pockets, 91,93/ 
validity, 91,94-96 

H 

Hansch equation, 226 
Heats of formation, azine N-oxides, 

385-388 
Herbicidal activity, protoporphyrinogen 

oxidase inhibitors using computer-
aided molecular modeling, 215,221 

Highly diverse structure design 
application, 88,90-91 
evaluation and ranking of structures, 

88,89f 
examples, 88,90-91 
generation of molecular structures, 86-88 
use of complementarity to evaluate 

binding affinity, 83-86 
validity, 91,94-96 

Highly potent substituted octanoamide 
angiotensin Π receptor antagonists, 
15-31 

bioactive enantiomer prediction, 21-22 
central enantiomer predication, 21-22 
central region modification, 22-24/ 
comparison to three-dimensional 

structure of angiotensin II, 28-29 
computational methodology, 18 
drug design strategies, 15-16 
ligand design based on pharmacophore, 

20-21 
medicinal chemistry background, 16-17 
molecular shape and pharmacophore 

elucidation, 18-20 
reasons for interest, 14-15 
structure-activity relationship 

evolution, 30-31 
subsite of ATj receptor reached by 

phenoxyproline octanoamides, 26-29 
substituent effects, 23-27 

Host-type volatiles, synergism of insect 
aggregation pheromone response, 
197-209 

Human immunodeficiency virus 1 
(HIV-1) protease 

comparative molecular field analysis, 
77-79 

example of de novo design, 73-76 
function and structure, 37 
inhibitors, 37-44 

Human rhinoviruses, interest in design of 
inhibitory agents, 140 

Hybrid rational design programs, 
advantages and disadvantages, 66-67 

Hydrocortisone, example as 
retrometabolic drug design, 101-105 

Hydrodynamic simulations, computational 
analysis of azine N-oxides as 
energetic materials, 380 

Hydrogen bonds, internal, stabilization of 
tautomers, 294,295/ 

Hydrophobic contacts, definition, 84 
Hydrophobicity, tautomeric equilibria 

effect, 292-301 
Hydroxypyridines, tautomeric forms, 

294,296,299/300 
Hyperpolarizabilities, definitions, 341 
Hypothetical active-site lattice method 

analysis, 77 
description, 36 

N-Imidazole-2-octanoic acids 
central region modification, 22-24/ 
prediction of bioactive enantiomer, 21-22 
QSAR, 23-27 

Immunoglobulins, description, 64 
In vitro toxicity tests, comparison to in 

vivo toxicity tests, 250-265 
Indirect drug design techniques, 65 
Inorganic crystal structure, example of 

chemical computation, 2 
Insect aggregation pheromone response 

synergized by host-type volatiles 
coefficient plots, 207-209 
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422 COMPUTER-AIDED MOLECULAR DESIGN 

Insect aggregation pheromone response 
synergized by host-type volatiles— 
Continued 

comparative molecular field analysis, 
201,203-204 

conformation of molecules, 199-201 
data, 199 
predicted vs. actual biological 

activity, 204-207 
structure-activity relationships, 204 
superimposition of molecules within 

region, 201,202/ 
Insect cholinesterase, QSAR, 283-287 
Integration of databases and modeling, 

modeling paradigms of computer-aided 
molecular design, 8 

Internal hydrogen bond, tautomeric 
equilibria, 294-297 

Internal motions and relaxations in 
solids, application of computer-aided 
molecular design, 6 

Inverse shape selectivity, molecular 
modeling of organic molecule behavior 
in zeolites, 334-336/ 

Iron binding modeling, ergosterol 
biosynthesis inhibitor fungicide design, 
173-174 

L 

L-685,434, qualitative inhibitor 
modeling, 38-39 

L-735,524, structure-based design, 36-49 
Life sciences, application of 

computer-aided molecular design, 5 
Ligand design, 67-79 

automated editing procedures, 72 
comparative molecular field analysis, 

76-77 
component assembly, 73 
fragment generation, 72 
hypothetical active-site lattice, 77 
pharmacophoric sites, 71 
process, 67-70 
three-dimensional database generation, 

71-72 

Ligand design—Continued 
three-dimensional QSAR methods, 77-79 
three-dimensional search query 

generational 
vector-contact cavity shell generation, 

70-71 
Ligand specificity, determination, 65 
Linear and nonlinear multivariate analyses 

in structure-activity relationship 
studies of chemoreception, 267-278 

advantages, 267-268 
correspondence factor analysis, 

268,271,272/ 
experimental procedure, 268 
frequency data, 268,269r 
nonlinear mapping, 271,273-278 

Linear discriminant analysis, 243 
Linear free energy relationships, 226 
Losartan 

bioactive enantiomer prediction, 21-22 
elucidation of molecular shape and 

pharmacophore, 18-20 
structure, 16-18 

Loteprednol etabonate 
clinical development, 112 
development, 104 

LY150921, synthesis, 16-17 
LY235656 
bioactive enantiomer prediction, 21-22 
elucidation of molecular shape and 

pharmacophore, 18-20 
LY298162, prediction, 21-22 
LY301875 subsite of AT{ receptor 

reached by phenoxyproline 
octanoamides, 26-29 

M 

MACROMODEL, function, 83 
Mahalanobis distance, determination, 244 
Materials science, application of 

computer-aided molecular design, 5 
Maternal toxicity, signs, 238-239 
Metaprolol, development of soft β 

blocker, 104-105 
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INDEX 423 

Mineral surfaces, computer simulation of 
polyelectrolyte adsorption, 316-324 

Model, matching to knowledge sought, 3 
Modeling paradigms of computer-aided 

molecular design, 6-8 
Molecular design, computer-aided 

traditional approach, 396,397/ 
See also Computer-aided molecular 

design 
Molecular dynamics 

amide-modified backbones in antisense 
oligodeoxynucleotides, 121-125 

description, 4 
use of computer-aided molecular 

design, 9 
Molecular electrostatic potential maps 

analysis, 54-56/ 
pharmacophore hypothesis, 54,57 
procedure, 52 
testing of pharmacophore hypothesis on 

amiloride analogues, 59 
Molecular modeling 

bioactive molecule design, 181 
5,6-dihydro-4/M,3,4-oxadiazines as 

octopaminergic pesticides, 184-190 
evidence for close-proximity binding of 

pheromone and coattractant in 
dried fruit beetle, 197-209 

highly potent substituted octanoamide 
angiotensin Π receptor antagonists, 
14-23 

organic molecule behavior in zeolites, 
329-337 

Molecular properties 
assessment using computers, 236-237 
calculation, 5 
protoporphyrinogen oxidase inhibitors 

using computer-aided molecular 
modeling, 217-218,221-222 

Molecular shape and pharmacophore 
elucidation, highly potent substituted 
octanoamide angiotensin Π receptor 
antagonists, 18-20 

Molecular structure generation by 
GrowMol, evaluation of new atoms, 
86-88 

Molecular surface calculation, 5 
Monovariation, experimental design in 

organic synthesis, 226-228 
MOP A C , probe of chorismate mutase 

mechanism, 159-169 
Motion of small molecules in media, 

application of computer-aided 
molecular design, 6 

Multivariate analyses in structure-
activity relationship studies of 
chemoreception, linear and nonlinear, 
267-278 

Multivariation in organic design, 
description, 225-234 

Ν 

New chemical design, use of predictive 
toxicology, 236-248 

NewPred, ligand design, 78 
Ni (100) surfaces, nitriding process, 

359-376 
Nitriding, 360-361 
Nitriding process on Cr (100), Fe (100), 

and Ni (100) surfaces 
analysis, 360-361 
band structures of N H 3 chemisorption/ 

decomposition, 368-375 
chemisorption binding energy, 

370,374,375/ 
computational methods, 363-365/ 
experimental procedure, 361-362 
future research, 376 
ΝΗ χ and Η chemisorption on metal 

clusters and surfaces, 364-367 
population analysis, 374-375 
previous studies, 362 

NLLSQ, probe of chorismate mutase 
mechanism, 159-169 

Noctuidae, pheromones, 267-278 
Nonlinear mapping, linear and nonlinear 

multivariate analyses in structure-
activity relationship studies of 
chemoreception, 271,273-278 

Nonlinear optical materials 
hyperpolarizabilities, 341-342 
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424 COMPUTER-AIDED M O L E C U L A R DESIGN 

Nonlinear optical materials—Continued 
property predictions using valence bond 

charge transfer theory, 342-358 
Nonlinear optical properties of organic 

materials, prediction using valence-
bond charge-transfer theory, 341-358 

Novel lead generation, modeling paradigms 
of computer-aided molecular design, 7 

Octanoamide angiotensin II receptor 
antagonists, highly potent 
substituted, 15-31 

Octopamine (p-hydroxyphenylethanol-
amine), target in search for pesticides, 
183-194 

Octopaminergic action, 5,6-dihydro-4J/-
1,3,4-oxadiazines, 183-194 

Oligonucleotides, antisense, molecular 
mechanics and dynamics, 114-125 

Oligothiophenes, saturation behavior, 
352,355-356 

One-dimensional plane detonation, 
model, 378,379/ 

One variable at a time strategy, 226 
Optimum prediction space, description, 248 
Organic materials, valence-bond charge-

transfer theory for nonlinear optical 
properties, 341-358 

Organic molecule behavior in zeolites, 
molecular modeling, 326-337 

Organic synthesis, experimental design, 
225-234 

Partition coefficients, tautomeric 
equilibria and hydrophobicity, 292-301 

Perception of odors and tastes, 
influencing factors, 267 

Pesticidal properties, 5,6-dihydro-4/f-
1,3,4-oxadiazines, 189,192-193 

Pharmacological receptors, description, 64 

Pharmacophore for angiotensin Π receptor 
antagonism, 20-21 

Pharmacophore hypothesis, 54-58 
Pharmacotoxicology, need for in vitro 

methods, 250 
Phenoxyproline octanoamides, subsite of 

ATj receptor, 26-28,29/ 
Pheromones in Noctuidae, linear and 

nonlinear multivariate analyses in 
structure-activity relationship studies 
of chemoreception, 267-278 

Photobleaching herbicides, molecular 
target site, 211-212 

Plackett-Burman design, 229-23It 
PM3 methods, probe of chorismate 

mutase mechanism, 159-169 
Polarizability, definition, 341 
Polyelectrolyte(s) 

adsorption on mineral surfaces, 316-324 
molecular modeling, 316 

Polymer design, genetic algorithmic 
approach, 405-408 

Polymer structures and properties, 
modeling paradigms of computer-aided 
molecular design, 8 

Poly(phenylcarbyne), structural analysis, 
304-314 

PPG-1013, activity prediction by 
computer-aided molecular modeling, 
211-212 

Predictive toxicology in new chemical 
design 

application, 246-248 
approach, 237-238 
classification accuracies, 244-245 
database building, 238-240 
handling, 246,248 
method assessment, 243-244 
predictor variables for model 

development, 242-243 
procedure, 246 
statistical parameters, 244,245i 
structure quantification, 240-242 

Primary screen for antirhinovirus 
agents, design using GASSER, 
139-154 
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INDEX 425 

Probes of chorismate mutase mechanism, 
semiempirical quantum chemical, 
159-169 

Prostaglandins, soft drug analogues, 
108-111 

Protein dynamics, example of chemical 
computation, 2 

Protein homology modeling paradigms of 
computer-aided molecular design, 8 

Proto IX, See Protoporphyrin ΓΧ 
Protogen IX, See Protoporphyrinogen IX 
Protoporphyrin IX, mechanism of 

accumulation, 212 
Protoporphyrinogen IX, comparison to 

protoporphyrinogen oxidase inhibitors, 
212 

Protoporphyrinogen oxidase, molecular 
target site of photobleaching 
herbicides, 211-212 

Protoporphyrinogen oxidase inhibitors, 
comparison to protoporphyrinogen, 212 

Protox, See Protoporphyrinogen oxidase 

Q 

Qualitative inhibitor modeling, HIV-1 
protease inhibitors, 38-39 

Quantitative relationships for organic 
reactions, data bank, 281 

Quantitative structure-activity 
relationships (QSAR) 

activity of protoporphyrinogen oxidase 
inhibitors using computer-aided 
molecular modeling, 219-222 

aniline mustards, 282-283 
application, 226 
colchicine-like mitosis, 281-282 
concept, 225-226 
description, 5 
evaluation of predictive and explanatory 

power for ligand design, 77-79 
highly potent substituted octanoamide 

angiotensin Π receptor antagonists, 
23-31 

insect cholinesterase, 283-287 

Quantitative structure-activity 
relationships (QSAR)—Continued 

parameter definitions, 289-290 
vertebrate cholinesterase, 287-289 

Quantum chemistry calculations, use of 
computer-aided molecular design, 8-9 

Quantum Chemistry Program Exchange, 2 
4-Quinolone, tautomerism, 294 
Quinones with primary amine substituents, 

tautomeric equilibria, 300/,301 

R 

Rabbit eye test 
comparison of in vivo and in vitro 

toxicity tests, 255,257-265 
development of in vitro test, 251-256 

Rational chemical design 
categories of programs, 65-67 
computer-aided molecular design, 9-10 

Rational drug design, application of 
computer-aided molecular design, 5 

Receptors, therapeutic manipulation, 64 
Refrigerant design, genetic algorithmic 

approach, 408^113 
Renin-angiotensin system, process, 14,15/ 
Retrometabolic drug design 

concept, 99-100 
corticosteroids as example, 101-105 
examples in clinical development, 112 
prostaglandin analogues, 108-111 
soft analogue design rules, 106-107 
working hypothesis and strategies, 

100-101 
Rhinoviruses, human, interest in design of 

inhibitory agents, 140 

S 

SADDLE, probe of chorismate mutase 
mechanism, 159-169 

Scanners, advantages and disadvantages, 
66-67 

Selective pesticides, biorational approach 
in development, 183 

D
ow

nl
oa

de
d 

by
 8

9.
16

3.
34

.1
36

 o
n 

O
ct

ob
er

 1
4,

 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ar

ch
 3

1,
 1

99
5 

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
58

9.
ix

00
2

In Computer-Aided Molecular Design; Reynolds, C., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



426 COMPUTER-AIDED M O L E C U L A R DESIGN 

Semiempirical quantum chemical probes 
of chorismate mutase mechanism, 
159-169 

central assumption, 169 
computed models vs. crystal structures, 

167-169 
conformational energetics, 160-163 
energetics of pseudoenzymatic transition 

states, 163-167 
experimental objectives, 159 
limitation, 169 
pseudoenzymatic transition states, 

163-167 
uncomplexed transition state, 159-160 

Semiquantitative inhibitor modeling of 
ΗΓ/-1 protease inhibitors, 39^9 

activity and structure, 39-42 
calculated intermolecular component of 

energy, 40-44 
examples, 44-47 
improvements, 47-49 

Shape selectivity, molecular modeling of 
organic molecule behavior in zeolites, 
334-336/ 

Simulations of drug diffusion in 
biomembranes, 128-136 

average distance traveled by benzene 
molecules vs. distance from bilayer 
center, 130,131/ 

distance traveled by select benzene 
molecules, 130,132/133 

experimental procedure, 128-130 
factors affecting diffusion coefficients, 

130 
relative amount of available free volume 

in bilayer vs. location within 
bilayer, 133-135 

torsion-gated jumps, 135,136/ 
Small molecule approach, modeling 

paradigms of computer-aided molecular 
design, 7 

Soft analogue, design rules, 106-107 
Soft drugs, classes and description, 100 
Solvent, effect on tautomeric equilibrium 

constant, 292-293,295/ 

SPLICE, automated editing procedures, 
72-73 

Stereolithography, structure-activity 
relationships of amiloride analogues, 
59-61 

Steric strain, structural analysis of 
carbyne network polymers, 311-313 

Structural analysis of carbyne network 
polymers, 307-312 

average bond-length determination, 
307-310 

bond cleavage in backbones, 
311,312/ 

degree of crowding between polymer 
substituents, 310 

degree of polymerization vs. size of 
backbone substituents, 313 

experimental description, 304-305 
future research, 314 
models for molecular dynamics 

simulations, 305-307 
π stacking vs. backbone conformation, 

310-311 
packing arrangement of phenyl 

substituents, 307,309/310 
steric strain vs. bond cleavage and 

biradical formation, 311-313 
torsion angle determination, 307-311 

Structure-activity relationships 
amiloride analogues, 54-62 
chemoreception, linear and nonlinear 

multivariate analyses, 267-278 
Structure-based design 

HIV-1 protease inhibitors, 36-49 
modeling paradigms of computer-aided 

molecular design, 7 
Structure quantification, electronic 

attributes, 240-242 
Substituent effect, highly potent 

substituted octanoamide angiotensin Π 
receptor antagonists, 23-27 

Sugar puckering, amide-modified 
backbones in antisense 
oligodeoxynucleotides, 122,124 

Surface mapping, description, 4 
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INDEX 427 

Synthesis, 5,6-dihydro-4//-l,3,4-
oxadiazines, 189,191/ 

Τ 

Tautomeric equilibria, 294-301 
effective solute hydrogen donor strength 

estimation, 296,298-299 
no internal hydrogen bond, 294,296-297 
quinones with primary amine 

substituents, 300/301 
stabilization by internal hydrogen 

bonds, 294,295/ 
tautomeric forms of 3-hydroxypyridines, 

296,299/300 
Tautomeric equilibrium constant, solvent 

effect, 292-293,295/ 
Tautomeric forms of drug or pesticide 

molecule, biological responses, 292 
Techniques of computer-aided molecular 

design, energetic models, 3 
Tematropium methyl sulfate, clinical 

development, 112 
Templates in zeolite synthesis, molecular 

modeling of organic molecule behavior 
in zeolites, 331-334,336 

Therapeutic index, definition, 98 
Thermolysin, use of GrowMol to design 

structures complementary to binding 
sites, 82-96 

Thermolysin binding pockets, occupation, 
91,93/ 

Three-dimensional databases, generation, 
71-72 

Three-dimensional search query, 
generation, 71 

Three-dimensional structure of binding 
site, information required for 
high-affinity drug design, 82 

TOPKAT, 237-248 
application, 246-248 
approach, 237-238 
classification accuracies, 244-245 
database building, 238-240 
method development, 243-244 
predictor variables, 242-243 

TOPKAT—Continued 
procedure, 246 
statistical parameters, 244,245r 
structure quantification, 240-242 
toxicity indicators, 237 

Torsion angle, structural analysis of 
carbyne network polymers, 307-311 

Toxicity, need for large-scale screening, 
237 

Toxicity tests, comparison of in vivo and 
in vitro, 250-265 

Toxicology, use in new chemical design, 
236-248 

Transport attributes, structure 
quantification, 242 

Triazoles, mode of action, 172-173 
Turf retardants, description, 226 
Two-dimensional hydrodynamic 

simulations of cylinder test, 379-380 

U 

UCC-C4243, activity prediction by 
computer-aided molecular modeling, 
211-212 

V 

Valence-bond charge-transfer theory for 
nonlinear optical properties of 
organic materials, 341-358 

application of electric field, 345 
approach, 342-343 
bond-length alternation, 344-346/ 
development, 341 
first principles prediction of solvent 

effects, 356-358 
hyperpolarizabilities, 347-350 
no solvent, 343-344 
polarizabilities, 345,347 
polarizability vs. solvent polarity, 351-354 
polymers, 356,357/ 
saturation behavior oligothiophenes, 

352,355-356 
theory, 343 
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Vector-contact cavity shell, generation, 
70-71 

Vertebrate cholinesterase, QSAR, 287-289 
Vibrational analysis, description, 4 

W 

Wall velocities 
azine N-oxides, 382,384 
measurement, 379-380 

Ζ 

Zeolites 
applications, 328 
importance as catalysts, 326 
properties, 326-327 
structural chemistry, 327,333/ 
synthesis, 326 
templates in synthesis, 331-334,336 

Production: Susan Antigone 
Indexing: Deborah H. Steiner 
Acquisition: Rhonda Bitterli 

Printed and bound by Maple Press, York, PA 
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